An anaerobic expanding-bed reactor was adopted to investigate the feasibility of an innovative integrated process of simultaneous desulfurization and denitrification (SDD) for high strength wastewater. In the reacto...An anaerobic expanding-bed reactor was adopted to investigate the feasibility of an innovative integrated process of simultaneous desulfurization and denitrification (SDD) for high strength wastewater. In the reactor, heterotrophic bacteria (including sulfate reducing bacterium and denitrifying bacteria) and autotrophic bacteria ( including Thiobacillus denitrificans) cooperated together by incubating and enriching functional bac- teria on different carriers in the anaerobic activated sludge. Synthetic wastewater with high concentrations of sulfate and nitrate was employed. The experimental resuhs showed that the removal efficiency of sulfate and nitrate was above 85% , elemental sulfur was observed while nitrate was absent in effluent. The balance of sulfur, nitrogen and electron was discussed respectively, which indicated that the integrated SDD process could be actualized. These resuhs might provide a guidance to further investigate the key factors affecting the integrated SDD process and to improve the efficiency of desulfurization and denitrification in wastewater treatment.展开更多
Leachate from a sanitary landfill site in Chengdu, China is treated using a hybrid-UASB reactor at pilot scale. H2S, resulting from the anaerobic bioconversion process of sulfate-reducing bacteria(SRB), inhibits the...Leachate from a sanitary landfill site in Chengdu, China is treated using a hybrid-UASB reactor at pilot scale. H2S, resulting from the anaerobic bioconversion process of sulfate-reducing bacteria(SRB), inhibits the growth and activity of methane-producing bacteria(MPB)and poses serious problems of pollution, so FeCl3is used for H2S removal. The results show that the system performs well in the treatment process. COD removal generally increases with the increase in the organic loading rate(OLR), while the sulfate removal decreases slowly. As the OLR is higher than 7 kgCOD/(m3·d), both COD and sulfate removal tend to be stable. When the reactor is operated at the design load of 9 kgCOD/(m3·d), COD and sulfate removal remain about 79% and 91%, respectively. At the same time, the percentage of COD removed by SRB(CODSRB)also decreases from 8.9% to 4.0%. With FeCl3 addition, COD removal increases to 83%, while sulfate removal and CODSRBfurther decrease to 89% and 1.89%, respectively. According to the mass balance, nearly 82% of the sulfur is prevented from converting into H2S. Moreover, when the FeCl3 dosage is more than 1.6 g/L leachate, H2S can be removed totally from the biogas. Therefore, the application of FeCl3 for H2S removal in leachate treatment using the UASB reactor is very suitable and viable.展开更多
The industrial application prospect and key issues in basic theory and application are discussed by the methods of theoretical analysis and calculation to promote the development of the pure-hydrogen reduction process...The industrial application prospect and key issues in basic theory and application are discussed by the methods of theoretical analysis and calculation to promote the development of the pure-hydrogen reduction process.According to the discussion of thermodynamics and kinetics of pure-hydrogen reduction reaction,the reduction reaction of iron oxide by pure hydrogen is an endothermic reaction,and the reaction rate of hydrogen reduction is significantly faster than that of carbon reduction.To explore the feasibility of the industrial applications of pure-hydrogen reduction,we design the hydrogen reduction reactor and process with reference to the industrialized hydrogen-rich reduction process and put forward the methods of appropriately increasing the reduction temperature,pressure,and temperature of iron ore into the furnace to accelerate the reaction rate and promote the reduction of iron oxide.The key technical parameters in engineering applications,such as hydrogen consumption,circulating gas volume,and heat balance,are discussed by theoretical calculations,and the optimized parameter values are proposed.The process parameters,cost,advantages,and disadvantages of various current hydrogen production methods are compared,and the results show that hydrogen production by natural gas reforming has a good development prospect.Through the discussion of the corrosion mechanism of high-temperature and high-pressure hydrogen on heat-resistant steel materials and the corrosion mechanism of H_2S in the hydrogen gas on steel,the technical ideas of developing new metal temperature-resistant materials,metal coating materials,and controlling gas composition are put forward to provide guidance for the selection of heater and reactor materials.Finally,the key factors affecting the smooth operation of the hydrogen reduction process in engineering applications are analyzed,offering a reference for the industrial application of the purehydrogen reduction process.展开更多
基金Sponsored by the New Century Distinguished Experts Supporting Program (Grant No 2005601310)
文摘An anaerobic expanding-bed reactor was adopted to investigate the feasibility of an innovative integrated process of simultaneous desulfurization and denitrification (SDD) for high strength wastewater. In the reactor, heterotrophic bacteria (including sulfate reducing bacterium and denitrifying bacteria) and autotrophic bacteria ( including Thiobacillus denitrificans) cooperated together by incubating and enriching functional bac- teria on different carriers in the anaerobic activated sludge. Synthetic wastewater with high concentrations of sulfate and nitrate was employed. The experimental resuhs showed that the removal efficiency of sulfate and nitrate was above 85% , elemental sulfur was observed while nitrate was absent in effluent. The balance of sulfur, nitrogen and electron was discussed respectively, which indicated that the integrated SDD process could be actualized. These resuhs might provide a guidance to further investigate the key factors affecting the integrated SDD process and to improve the efficiency of desulfurization and denitrification in wastewater treatment.
文摘Leachate from a sanitary landfill site in Chengdu, China is treated using a hybrid-UASB reactor at pilot scale. H2S, resulting from the anaerobic bioconversion process of sulfate-reducing bacteria(SRB), inhibits the growth and activity of methane-producing bacteria(MPB)and poses serious problems of pollution, so FeCl3is used for H2S removal. The results show that the system performs well in the treatment process. COD removal generally increases with the increase in the organic loading rate(OLR), while the sulfate removal decreases slowly. As the OLR is higher than 7 kgCOD/(m3·d), both COD and sulfate removal tend to be stable. When the reactor is operated at the design load of 9 kgCOD/(m3·d), COD and sulfate removal remain about 79% and 91%, respectively. At the same time, the percentage of COD removed by SRB(CODSRB)also decreases from 8.9% to 4.0%. With FeCl3 addition, COD removal increases to 83%, while sulfate removal and CODSRBfurther decrease to 89% and 1.89%, respectively. According to the mass balance, nearly 82% of the sulfur is prevented from converting into H2S. Moreover, when the FeCl3 dosage is more than 1.6 g/L leachate, H2S can be removed totally from the biogas. Therefore, the application of FeCl3 for H2S removal in leachate treatment using the UASB reactor is very suitable and viable.
基金financially supported by the National Natural Science Foundation of China(No.52104297)the National Key R&D Plan(No.2019YFC1905202)。
文摘The industrial application prospect and key issues in basic theory and application are discussed by the methods of theoretical analysis and calculation to promote the development of the pure-hydrogen reduction process.According to the discussion of thermodynamics and kinetics of pure-hydrogen reduction reaction,the reduction reaction of iron oxide by pure hydrogen is an endothermic reaction,and the reaction rate of hydrogen reduction is significantly faster than that of carbon reduction.To explore the feasibility of the industrial applications of pure-hydrogen reduction,we design the hydrogen reduction reactor and process with reference to the industrialized hydrogen-rich reduction process and put forward the methods of appropriately increasing the reduction temperature,pressure,and temperature of iron ore into the furnace to accelerate the reaction rate and promote the reduction of iron oxide.The key technical parameters in engineering applications,such as hydrogen consumption,circulating gas volume,and heat balance,are discussed by theoretical calculations,and the optimized parameter values are proposed.The process parameters,cost,advantages,and disadvantages of various current hydrogen production methods are compared,and the results show that hydrogen production by natural gas reforming has a good development prospect.Through the discussion of the corrosion mechanism of high-temperature and high-pressure hydrogen on heat-resistant steel materials and the corrosion mechanism of H_2S in the hydrogen gas on steel,the technical ideas of developing new metal temperature-resistant materials,metal coating materials,and controlling gas composition are put forward to provide guidance for the selection of heater and reactor materials.Finally,the key factors affecting the smooth operation of the hydrogen reduction process in engineering applications are analyzed,offering a reference for the industrial application of the purehydrogen reduction process.