期刊文献+
共找到21篇文章
< 1 2 >
每页显示 20 50 100
Regulation of the selective hydrogenation performance of sulfur-doped carbon-supported palladium on chloronitrobenzene
1
作者 Qunfeng Zhang Bingcheng Li +6 位作者 Yuan Zhou Deshuo Zhang Chunshan Lu Feng Feng Jinghui Lv Qingtao Wang Xiaonian Li 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第6期69-75,共7页
The overall performance of metal catalysts can be efficiently adjusted by modifying carbon carriers with different valence sulfur precursors.The wet impregnation technique successfully prepared carbon material carrier... The overall performance of metal catalysts can be efficiently adjusted by modifying carbon carriers with different valence sulfur precursors.The wet impregnation technique successfully prepared carbon material carriers doped with varying sources of sulfur(Na_(2)SO_(4),NaHSO_(3),Na_(2)S·9H_(2)O).Palladium carbon catalysts doped with different sulfur precursors had been prepared with the aid of the liquid-phase reduction method of the selective hydrogenation of o-chloronitrobenzene(o-CNB)to o-chloroaniline(o-CAN).The catalyst prepared for Na_(2)S·9H_(2)O as a precursor has excellent performance,and the selectivity for o-CAN is more than 99.9%at 100%conversion.In addition,the characterization results show that with the decrease of S valence,the electronic effect between S and Pd increases,and the outer electron shift of Pd increases,which reduces the adsorption and dissociation ability of Pd to hydrogen,resulting in excellent selectivity.The effects provided a good idea for the hydrogenation of o-CNB and a different point of view on sulfur doping in a variety of hydrogenation reactions. 展开更多
关键词 CATALYST HYDROGENATION SELECTIVITY sulfur doping Electronic effect
下载PDF
Synthesis of sulfur doped C_(3)N_(4) with enhanced photocatalytic activity in molten salt 被引量:2
2
作者 Keke Guan Junyi Li +5 位作者 Wen Lei Honghong Wang Zhaoming Tong Quanli Jia Haijun Zhang Shaowei Zhang 《Journal of Materiomics》 SCIE EI 2021年第5期1131-1142,共12页
In this paper,sulfur doped g-C_(3)N_(4)(S-g-C_(3)N_(4))was successfully prepared at 500℃ for 3 h via a modified molten salt method using dicyandiamide as the main raw material,trithiocyanuric acid as the sulfur sourc... In this paper,sulfur doped g-C_(3)N_(4)(S-g-C_(3)N_(4))was successfully prepared at 500℃ for 3 h via a modified molten salt method using dicyandiamide as the main raw material,trithiocyanuric acid as the sulfur source and LiBreKCl as the reaction medium.The as-prepared SeCN5.0% sample(the mass ratio of trithiocyanuric acid to dicyandiamide was 5.0%)composed of irregular flakes showed a band gap of 1.83 eV,which was narrower than that(2.55 eV)of pristine g-C_(3)N_(4).The SeCN5.0% sample also exhibited an outstanding absorption capacity of visible light.Moreover,the photodegradation rate toward methylene blue and tetracycline were respectively 10 and 20 times as high as that of bulk g-C_(3)N_(4) prepared by conventional heating methods,confirming its superior photocatalytic performance.These results can be attributed to that the replacement of lattice nitrogen with sulfur atom tuned the electronic structure of g-C_(3)N_(4),improved the absorption of visible light,optimized the separation of photogenerated electron-hole pairs,and consequently enhanced the photocatalytic activity of g-C_(3)N_(4).Moreover,the trapping experiments implied that hole(ht)and superoxide radical($O2)were the main active species in the process of photodegradation. 展开更多
关键词 g-C_(3)N_(4) sulfur doped Molten salt Methylene blue TETRACYCLINE Photocatalytic activity
原文传递
High sulfur-doped hard carbon anode from polystyrene with enhanced capacity and stability for potassium-ion storage 被引量:1
3
作者 Xiaoyan Chen Xin-Bing Cheng Zhigang Liu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第5期688-698,共11页
Carbonaceous materials are regarded as a promising anode material for potassium ion batteries(PIBs)due to their high electronic conductivity, abundant resources and low cost. However, relatively low storage capacity a... Carbonaceous materials are regarded as a promising anode material for potassium ion batteries(PIBs)due to their high electronic conductivity, abundant resources and low cost. However, relatively low storage capacity and structural instability still hinder their practical application. Herein, high sulfur-doped hard carbon(SHC-3) with a sulfur up to 27.05 at% is synthesized from polystyrene and sulfur as precursors. As an anode for PIBs, the SHC-3 delivers a superb cycling stability and rate performance(298.1 mAh g^(-1)at 100 mA g^(-1) for 1000 cycles, a capacity retention of 95.2%;220.2 mAh g^(-1)at 500 mA g^(-1) after 5200 cycles). The potassium storage of SHC-3 exhibits excellent cyclic stability at both low and high rates.Structure and kinetic studies demonstrate that the larger interlayer spacing(0.382 nm) of the SHC-3 accelerates the diffusion of potassium ions and effectively alleviates the volume expansion, and thus maintains the structure stability during the process of potassization/de-potassization. Meanwhile, the density functional theory calculation shows that the doped sulfur atoms provide abundant active sites for the adsorption of potassium ions, thereby increasing the reversible capacity of PIBs. This work provides a new scheme for the design of carbonaceous anode materials with high capacity and long cycle life. 展开更多
关键词 Hard carbon materials sulfur doping ANODE Potassium-ion storage DFT calculation
下载PDF
Bimetallic Sulfide/Sulfur Doped T3C2TA:MXene Nanocomposites as High-performance Anode Materials for Sodium-ion Batteries
4
作者 ZANG Rui LI Peng WANG Guoxiu 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2020年第3期431-438,共8页
The application of transition metal dichalcogenides(TMDs)as anode materials in sodium-ion batteries(SIBs) has been hindered by low conductivity and poor cyclability.Herein,we report the synthesis of CoxFe1-xS2 bimetal... The application of transition metal dichalcogenides(TMDs)as anode materials in sodium-ion batteries(SIBs) has been hindered by low conductivity and poor cyclability.Herein,we report the synthesis of CoxFe1-xS2 bimetallic sulfide/sulfur-doped Ti3C2 MXene nanocomposites(CoxFe1-xS2@S-Ti3C2)by a facile co-precipitation process and thermal-sulfurization reaction.The interconnected 3D frameworks consisting of MXene nanosheets can effectively buffer the volume change and enhance the charge transfer.In particular,sulfur-doped MXene nanosheets provide rich active sites for sodium storage and restrain sulfur loss during charging/discharging processes,leading the increase of specific capacity and cycling the stability of anode materials.As a result,CoxFe1-xS2@S-Ti3C2 anodes exhibited high capacity,high rate capability and long cycle life(399mA·h/g at 5A/g with an 94% capacity retention after 600 cycles). 展开更多
关键词 Bimetallic sulfide Ti3C2 MXene sulfur doping Anode material Sodium-ion battery
原文传递
Enhanced Pseudo‑Capacitive Contributions to High‑Performance Sodium Storage in TiO2/C Nanofibers via Double Effects of Sulfur Modification 被引量:1
5
作者 Yan Zhang Yuanye Huang +3 位作者 Vesna Srot Peter A.van Aken Joachim Maier Yan Yu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2020年第12期1-12,共12页
Pseudo-capacitive mechanisms can provide higher energy densities than electrical double-layer capacitors while being faster than bulk storage mechanisms.Usually,they suffer from low intrinsic electronic and ion conduc... Pseudo-capacitive mechanisms can provide higher energy densities than electrical double-layer capacitors while being faster than bulk storage mechanisms.Usually,they suffer from low intrinsic electronic and ion conductivities of the active materials.Here,taking advantage of the combination of TiS2 decoration,sulfur doping,and a nanometer-sized structure,as-spun TiO2/C nanofiber composites are developed that enable rapid transport of sodium ions and electrons,and exhibit enhanced pseudo-capacitively dominated capacities.At a scan rate of 0.5 mV s−1,a high pseudo-capacitive contribution(76%of the total storage)is obtained for the S-doped TiS2/TiO2/C electrode(termed as TiS2/S-TiO2/C).Such enhanced pseudocapacitive activity allows rapid chemical kinetics and significantly improves the high-rate sodium storage performance of TiO2.The TiS2/S-TiO2/C composite electrode delivers a high capacity of 114 mAh g−1 at a current density of 5000 mA g−1.The capacity maintains at high level(161 mAh g−1)even after 1500 cycles and is still characterized by 58 mAh g−1 at the extreme condition of 10,000 mA g−1 after 10,000 cycles. 展开更多
关键词 Sodium-ion battery Pseudo-capacitive Anodes TiO2/C nanofibers sulfur doped
下载PDF
Effects of nanopores and sulfur doping on hierarchically bunched carbon fibers to protect lithium metal anode 被引量:5
6
作者 Ji In Jung Sunwoo Park +3 位作者 Son Ha Se Youn Cho Hyoung-Joon Jin Young Soo Yun 《Carbon Energy》 CAS 2021年第5期784-794,共11页
Studies on three-dimensional structured carbon templates have focused on how to guide homogeneous lithium metal nucleation and growth for lithium metal anodes(LMAs).However,there is still insufficient evidence for a k... Studies on three-dimensional structured carbon templates have focused on how to guide homogeneous lithium metal nucleation and growth for lithium metal anodes(LMAs).However,there is still insufficient evidence for a key factor to achieve their high electrochemical performance.Here,the effects of nanopores and sulfur doping on carbon-based nanoporous host(CNH)electrode materials for LMAs were investigated using natural polymer-derived CNHs.Homogeneous pore-filling behaviors of lithium metal in the nanopores of the CNH electrode materials were first observed by ex situ scanning electron microscopy analysis,where the protective lithium metal nucleation and growth process led to significantly high Coulombic efficiency(CE)of~99.4%and stable 600 cycles.In addition,a comparison study of CNH and sulfurdoped CNH(S-CNH)electrodes,which differ only in the presence or absence of sulfur,revealed that sulfur doping can cause lower electrochemical series resistance,higher CE value,and better cycling stability in a wide range of current densities and number of cycles.Moreover,S-CNH-based LMAs showed high electrochemical performance in full-cell Li-S battery tests using a sulfur copolymer cathode,where a high energy density of 1370Wh kgelectrode−1 and an excellent power density of 4120Wkgelectrode−1 were obtained. 展开更多
关键词 carbon template Li-S batteries lithium metal anode lithium metal batteries nanoporous carbon sulfur doping
下载PDF
Synthesis of N-type semiconductor diamonds with sulfur,boron co-doping in FeNiMnCo-C system at high pressure and high temperature 被引量:4
7
作者 张贺 李尚升 +4 位作者 宿太超 胡美华 马红安 贾晓鹏 李勇 《Chinese Physics B》 SCIE EI CAS CSCD 2017年第5期392-397,共6页
A series of diamonds with boron and sulfur co-doping were synthesized in the Fe Ni Mn Co-C system by temperature gradient growth(TGG) under high pressure and high temperature(HPHT). Because of differences in addit... A series of diamonds with boron and sulfur co-doping were synthesized in the Fe Ni Mn Co-C system by temperature gradient growth(TGG) under high pressure and high temperature(HPHT). Because of differences in additives, the resulting diamond crystals were colorless, blue-black, or yellow. Their morphologies were slab, tower, or minaret-like. Analysis of the x-ray photoelectron spectra(XPS) of these diamonds shows the presence of B, S, and N in samples from which N was not eliminated. But only the B dopant was assuredly incorporated in the samples from which N was eliminated. Resistivity and Hall mobility were 8.510 Ω·cm and 760.870 cm^2/V·s, respectively, for a P-type diamond sample from which nitrogen was eliminated. Correspondingly, resistivity and Hall mobility were 4.211×10^5 Ω·cm and 76.300 cmΩ2/V·s for an N-type diamond sample from which nitrogen was not eliminated. Large N-type diamonds of type Ib with B–S doping were acquired. 展开更多
关键词 boron diamond eliminated doping photoelectron additives incorporated resistivity tower sulfur
下载PDF
Approaching Superior Potassium Storage of Carbonaceous Anode Through a Combined Strategy of Carbon Hybridization and Sulfur Doping
8
作者 Qianqian Yao Yanmei Gan +5 位作者 Zuju Ma Xiangying Qian Suzhi Cai Yi Zhao Lunhui Guan Wei Huang 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2022年第3期944-953,共10页
Carbonaceous materials are promising anode candidates for potassium-ion batteries(PIBs)given its high conductivity,stable property,and abundant resource,while its practical implementation is still hampered by its limi... Carbonaceous materials are promising anode candidates for potassium-ion batteries(PIBs)given its high conductivity,stable property,and abundant resource,while its practical implementation is still hampered by its limited capacity and inferior rate behavior.Herein,we report a superior carbonaceous anode through a combined strategy of carbon hybridization and heteroatom doping.In this composite,hollow carbon spindles(HCS)were anchored on the surface of graphene(G)followed with sulfur doping treatment,aiming to integrate the high conductivity of graphene,the good structure stability of HCS,and the S doping-induced ample active sites.As a PIB anode,the S-G@HCS composite can display high capacity(301 mAh g^(-1)at 0.1 A g^(-1)after 500 cycles)and long-term cyclability up to 1800 cycles at 2 A g^(-1).Impressively,it can deliver an outstanding rate capacity of 215 mAh g^(-1)at 10 A g^(-1),which is superior to most carbon anodes as-reported so far for PIBs.Experimental and theoretical analysis manifests that the construction of graphene/amorphous carbon interface as well as S doping enables the regulation of electronic structure and ion adsorption/transportation properties of carbonaceous material,thus accounting for the high capacity and superior rate capability of S-G@HCS composite. 展开更多
关键词 carbonaceous anode graphene hollow carbon spindles potassium-ion batteries sulfur doping
下载PDF
Hierarchically porous Fe/N/S/C nanospheres with high-content of Fe-Nx for enhanced ORR and Zn-air battery performance 被引量:1
9
作者 Luming Wu Ruge Zhao +5 位作者 Guo Du Huan Wang Machuan Hou Wei Zhang Pingchuan Sun Tiehong Chen 《Green Energy & Environment》 SCIE EI CAS CSCD 2023年第6期1693-1702,共10页
Heteroatom-doped carbon-based transition-metal single-atom catalysts(SACs) are promising electrocatalysts for oxygen reduction reaction(ORR). Herein, with the aid of hierarchically porous silica as hard template, a fa... Heteroatom-doped carbon-based transition-metal single-atom catalysts(SACs) are promising electrocatalysts for oxygen reduction reaction(ORR). Herein, with the aid of hierarchically porous silica as hard template, a facile and general melting perfusion and mesopore-confined pyrolysis method was reported to prepare single-atomic Fe/N–S-doped carbon catalyst(FeNx/NC-S) with hierarchically porous structure and well-defined morphology. The FeNx/NC-S exhibited excellent ORR activity with a half-wave potential(E_(1/2)) of 0.92 V, and a lower overpotential of 320 mV at a current density of 10 mA cm^(-2)for OER under alkaline condition. The remarkable electrocatalysis performance can be attributed to the hierarchically porous carbon nanospheres with S doping and high content of Fe-Nx sites(up to 3.7 wt% of Fe), resulting from the nano-confinement effect of the hierarchically porous silica spheres(NKM-5) during the pyrolysis process. The rechargeable Zn-air battery with FeNx/NC-S as a cathode catalyst demonstrated a superior power density of 194.5 mW cm-2charge–discharge stability. This work highlights a new avenue to design advanced SACs for efficient sustainable energy storage and conversion. 展开更多
关键词 Melting perfusion Nano-confined pyrolysis Hierarchically porous High content of Fe-Nx sites sulfur doping Oxygen reduction reaction
下载PDF
UV light driven high-performance room temperature surface acoustic wave NH_(3) gas sensor using sulfur-doped g-C_(3)N_(4) quantum dots
10
作者 Kedhareswara Sairam Pasupuleti Sourabh S.Chougule +6 位作者 Devthade Vidyasagar Na-hyun Bak Namgee Jung Young-Heon Kim Jong-Hee Lee Song-Gang Kim Moon-Deock Kim 《Nano Research》 SCIE EI CSCD 2023年第5期7682-7695,共14页
Nanomaterials integrated surface acoustic wave(SAW)gas sensing technology has emerged as a promising candidate for realtime toxic gas sensing applications for environmental and human health safety.However,the developm... Nanomaterials integrated surface acoustic wave(SAW)gas sensing technology has emerged as a promising candidate for realtime toxic gas sensing applications for environmental and human health safety.However,the development of novel chemical interface based on two-dimensional(2D)sensing materials for SAW sensors for the rapid and sensitive detection of NH_(3)gas at room temperature(RT)still remains challenging.Herein,we report a highly selective RT NH_(3)gas sensor based on sulfur-doped graphitic carbon nitride quantum dots(S@g-C_(3)N_(4)QD)coated langasite(LGS)SAW sensor with enhanced sensitivity and recovery rate under ultraviolet(UV)illumination.Fascinatingly,the sensitivity of the S@g-C_(3)N_(4)QD/LGS SAW sensor to NH_(3)(500 ppb)at RT is dramatically enhanced by~4.5-fold with a low detection limit(~85 ppb),high selectivity,excellent reproducibility,fast response/recovery time(70 s/79 s)under UV activation(365 nm)as compared to dark condition.Additionally,the proposed sensor exhibited augmented NH_(3)detection capability across the broad range of relative humidity(20%–80%).Such remarkable gas sensing performances of the as-prepared sensor to NH_(3)are attributed to the high surface area,enhanced functional groups,sulfur defects,UV photogenerated charge carriers,facile charge transfer in the S@g-C_(3)N_(4)QD sensing layer,which further helps to improve the gas molecules adsorption that causes the increase in conductivity,resulting in larger frequency responses.The gas sensing mechanism of S@g-C_(3)N_(4)QD/LGS SAW sensor is ascribed to the enhanced electroacoustic effect,which is supported by the correlation of resistive type and COMSOL Multiphysics simulation studies.We envisage that the present work paves a promising strategy to develop the next generation 2D g-C_(3)N_(4)based high responsive RT SAW gas sensors. 展开更多
关键词 two-dimensional graphitic carbon nitride(2D g-C_(3)N_(4)) sulfur doping quantum dots surface acoustic wave(SAW)sensor NH_(3)gas electroacoustic effect
原文传递
Accelerating solar driven CO_(2) reduction via sulfur-doping boosted water dissociation and proton transfer
11
作者 Ke Yan Liang Chen +5 位作者 Yangguang Hu Ting Wang Cong Chen Chao Gao Youju Huang Benxia Li 《Nano Research》 SCIE EI CSCD 2024年第3期1056-1065,共10页
Exploring efficient photocatalysts for solar driven CO_(2) reduction with water(H_(2)O)as a proton donor is highly imperative but remains a great challenge because the synchronous enhancement of CO_(2) activation,H_(2... Exploring efficient photocatalysts for solar driven CO_(2) reduction with water(H_(2)O)as a proton donor is highly imperative but remains a great challenge because the synchronous enhancement of CO_(2) activation,H_(2)O dissociation and proton transfer is hardly achieved on a photocatalyst.Particularly,the sluggish H_(2)O dissociation impedes the photocatalytic CO_(2) reduction reaction involving multiple proton–electron coupling transfer processes.Herein,a sulfur-doped BiOCl(S-BiOCl)photocatalyst with abundant oxygen vacancies(OV)is developed,which exhibits broadband-light harvesting across solar spectrum and distinct photothermal effect due to photochromism.For photocatalytic CO_(2) reduction with H_(2)O in a gas–solid system,the high CO yield of 49.76μmol·g_(cat)^(-1)·h^(-1) with 100%selectivity is achieved over the S-BiOCl catalyst under a simulated sunlight.The H_(2)O-assisted CO_(2) reduction reaction on S-BiOCl catalyst is triggered by photocatalysis and the photothermal heating further enhances the reaction rate.The kinetic isotope experiments indicate that the sluggish H_(2)O dissociation affects the whole photocatalytic CO_(2) reduction process.The presence of oxygen vacancies promotes the adsorption and activation of H_(2)O and CO_(2),and the doped S sites play a crucial role in boosting H_(2)O dissociation and accelerating the dynamic migration of hydrogen species.As a result,the ingenious integration of OV defects,S sites and photothermal effect in S-BiOCl catalyst conjointly contributes to the significant improvement in photocatalytic CO_(2) reduction performance. 展开更多
关键词 BiOCl sulfur doping photocatalytic CO_(2)reduction H_(2)O activation proton feeding
原文传递
Carbon coated ultrasmall anatase TiO_2 nanocrystal anchored on N,S-RGO as high-performance anode for sodium ion batteries 被引量:2
12
作者 Lingfei Zhao Tong Tang +2 位作者 Weihua Chen Xiangming Feng Liwei Mi 《Green Energy & Environment》 SCIE 2018年第3期277-285,共9页
Anatase TiO_2 has been investigated as one of the most promising anode materials for sodium ion batteries(SIBs)with low cost and high theoretical capacity.Herein,a composite material of TiO_2 /N,S-RGO@C with carbon co... Anatase TiO_2 has been investigated as one of the most promising anode materials for sodium ion batteries(SIBs)with low cost and high theoretical capacity.Herein,a composite material of TiO_2 /N,S-RGO@C with carbon coated ultrasmall anatase TiO_2 anchored on nitrogen and sulfur co-doped RGO matrix was successfully prepared by a rational designed process.The composite structure exhibited ultrasmall crystal size,rich porous structure,homogeneous heteroatoms doping and thin carbon coating,which synergistically resulted in elevated electron and ion transfer.The anode exhibited high rate capacities with good reversibility under high rate cycling.The carbon coating was investigated to be effective to prevent active material falling and lead to long term cycling performance with a high capacity retention of 181 m Ah g^(à1)after 2000cycles at 2 C.Kinetic studies were carried out and the results revealed that the superior performance of the composite material were derived from the decreased charge transfer resistance and elevated ion diffusion.Results suggested that the TiO_2 /N,S-RGO@C composite is a promising anode material for sodium ion batteries. 展开更多
关键词 Titanium dioxide Nitrogen/sulfur doping RGO Sodium ion battery Long cycle life
下载PDF
Atomically Dispersed Fe-N_4 Modified with Precisely Located S for Highly Efficient Oxygen Reduction 被引量:1
13
作者 Yin Jia Xuya Xiong +9 位作者 Danni Wang Xinxuan Duan Kai Sun Yajie Li Lirong Zheng Wenfeng Lin Mingdong Dong Guoxin Zhang Wen Liu Xiaoming Sun 《Nano-Micro Letters》 SCIE EI CAS CSCD 2020年第9期123-135,共13页
Immobilizing metal atoms by multiple nitrogen atoms has triggered exceptional catalytic activity toward many critical electrochemical reactions due to their merits of highly unsaturated coordination and strong metal-s... Immobilizing metal atoms by multiple nitrogen atoms has triggered exceptional catalytic activity toward many critical electrochemical reactions due to their merits of highly unsaturated coordination and strong metal-substrate interaction.Herein,atomically dispersed Fe-NC material with precise sulfur modification to Fe periphery(termed as Fe-NSC) was synthesized,X-ray absorption near edge structure analysis confirmed the central Fe atom being stabilized in a specific configuration of Fe(N3)(N-C-S).By enabling precisely localized S doping,the electronic structure of Fe-N4 moiety could be mediated,leading to the beneficial adjustment of absorption/desorption properties of reactant/intermediate on Fe center.Density functional theory simulation suggested that more negative charge density would be localized over Fe-N4 moiety after S doping,allowing weakened binding capability to *OH intermediates and faster charge transfer from Fe center to O species.Electrochemical measurements revealed that the Fe-NSC sample exhibited significantly enhanced oxygen reduction reaction performance compared to the S-free Fe-NC material(termed as Fe-NC),showing an excellent onset potential of 1.09 V and half-wave potential of 0.92 V in 0.1 M KOH.Our work may enlighten relevant studies regarding to accessing improvement on the catalytic performance of atomically dispersed M-NC materials by managing precisely tuned local environments of M-Nx moiety. 展开更多
关键词 Atomic dispersion Iron–nitrogen moiety Electronic structure sulfur doping Oxygen reduction
下载PDF
A nanoporous nitrogen-doped graphene for high performance lithium sulfur batteries
14
作者 Shuang-Ke Liu Xiao-Bin Hong +3 位作者 Yu-Jie Li Jing Xu Chun-Man Zheng Kai Xie 《Chinese Chemical Letters》 SCIE CAS CSCD 2017年第2期412-416,共5页
A nanoporous N-doped reduced graphene oxide(p-N-rGO) was prepared through carbothermal reaction between graphene oxide and ammonium-containing oxometalates as sulfur host for Li-S batteries.The p-N-rGO sheets have a... A nanoporous N-doped reduced graphene oxide(p-N-rGO) was prepared through carbothermal reaction between graphene oxide and ammonium-containing oxometalates as sulfur host for Li-S batteries.The p-N-rGO sheets have abundant nanopores with diameters of 10-40 nm and the nitrogen content is 2.65 at%.When used as sulfur cathode,the obtained p-N-rGO/S composite has a high reversible capacity of 1110mAhg^-1 at 1C rate and stable cycling performance with 781.8 mAhg-1 retained after 110 cycles,much better than those of the rGO/S composite.The enhanced electrochemical performance is ascribed to the rational combination of nanopores and N-doping,which provide efficient contact and wetting with the electrolyte,accommodate volume expansion and immobilize polysulfides during cycling. 展开更多
关键词 Lithium sulfur battery sulfur cathode Porous graphene Nitrogen doping High performance
原文传递
Tuning nitrogen defects and doping sulfur in carbon nitride for enhanced visible light photocatalytic activity
15
作者 Huilin Xu Xiangfeng Peng +1 位作者 Jingxuan Zheng Zhao Wang 《Frontiers of Chemical Science and Engineering》 SCIE EI CSCD 2023年第1期93-101,共9页
Defect construction and heteroatom doping are effective strategies for improving photocatalytic activity of carbon nitride(g-C_(3)N_(4)).In this work,N defects were successfully prepared via cold plasma.High-energy el... Defect construction and heteroatom doping are effective strategies for improving photocatalytic activity of carbon nitride(g-C_(3)N_(4)).In this work,N defects were successfully prepared via cold plasma.High-energy electrons generated by plasma can produce N defects and embed sulfur atoms into g-C_(3)N_(4).The N defects obviously promoted photocatalytic degradation performance that was 7.5 times higher than that of pure g-C_(3)N_(4).The concentration of N defects can be tuned by different power and time of plasma.With the increase in N defects,the photocatalytic activity showed a volcanic trend.The g-C_(3)N_(4)with moderate concentration of N defects exhibited the highest photocatalytic activity.S-doped g-C_(3)N_(4)exhibited 11.25 times higher photocatalytic activity than pure g-C_(3)N_(4).It provided extra active sites for photocatalytic reaction and improved stability of N defects.The N vacancy-enriched and S-doped g-C_(3)N_(4)are beneficial for widening absorption edge and improving the separation efficiency of electron and holes. 展开更多
关键词 g-C_(3)N_(4) nitrogen defect sulfur doping PHOTODEGRADATION plasma
原文传递
Low-temperature selective synthesis of metastableα-MoC with electrochemical properties:Electrochemical co-reduction of CO_(2)and MoO_(3)in molten salts
16
作者 Longtao Zhu Yinan Zhao +3 位作者 Wenhao Yang Hsien-Yi Hsu Ping Peng Fang-Fang Li 《Chinese Chemical Letters》 SCIE CAS CSCD 2024年第1期310-315,共6页
Metastable molybdenum carbide(α-MoC),as a catalyst and an excellent support for metal catalysts,has been widely used in thermo/electro-catalytic reactions.However,the selective synthesis ofα-MoC remains a great chal... Metastable molybdenum carbide(α-MoC),as a catalyst and an excellent support for metal catalysts,has been widely used in thermo/electro-catalytic reactions.However,the selective synthesis ofα-MoC remains a great challenge.Herein,a simple one-pot synthetic strategy for the selective preparation of metastableα-MoC is proposed by electrochemical co-reduction of CO_(2)and MoO_(3)in a low-temperature eutectic molten carbonate.The synthesizedα-MoC shows a reed flower-like morphology.By controlling the electrolysis time and monitoring the phase and morphology of the obtained products,the growth process ofα-MoC is revealed,where the carbon matrix is deposited first followed by the growth ofα-MoC from the carbon matrix.Moreover,by analyzing the composition of the electrolytic products,the formation mechanism forα-MoC is proposed.In addition,through this one-pot synthetic strategy,S-dopedα-MoC is successfully synthesized.Density functional theory(DFT)calculations reveal that S doping enhanced the HER performance ofα-MoC by facilitating water absorption and dissociation and weakening the bond energy of Mo-H to accelerate H desorption.The present work not only highlights the valuable utilization of CO_(2) but also offers a new perspective on the design and controllable synthesis of metal carbides and their derivatives. 展开更多
关键词 α-MoC CO_(2)electroreduction Molten salt sulfur doping Hydrogen evolution reaction
原文传递
Bimetallic metal-organic framework derived doped carbon nanostructures as high-performance electrocatalyst towards oxygen reactions 被引量:4
17
作者 Lu Chen Zhi Chen +1 位作者 Xudong Liu Xiaolei Wang 《Nano Research》 SCIE EI CAS CSCD 2021年第5期1533-1540,共8页
Rational design and development of cost-effective, highly active and durable bifunctional electrocatalysts towards oxygen redox reactions is of critical importance but great challenge for the broad implementation of n... Rational design and development of cost-effective, highly active and durable bifunctional electrocatalysts towards oxygen redox reactions is of critical importance but great challenge for the broad implementation of next-generation metal-air batteries for electric transportation. Herein, a high-performance electrocatalyst of cobalt and zinc sulfides nanocrystals embedded within nitrogen and sulfur co-doped porous carbon is successfully designed and derived from bimetallic metal-organic frameworks of cobalt and zinc containing zeolitic imidazolate frameworks. The unique nanostructure contains abundant electrocatalytic active sites of sulfides nanocrystals and nitrogen and sulfur dopants which can be fast accessed through highly porous structure originate from both zinc vaporization and sulfurization processes. Such bifunctional electrocatalyst delivers a superior half-wave potential of 0.86 V towards oxygen reduction reaction and overpotential of 350 mV towards oxygen evolution reaction, as well as excellent durability owing to the highly stable carbon framework with a great graphitized portion. The performance boosting is mainly attributed to the unique nanostructure where bimetallic cobalt and zinc provide synergistic effect during both synthesis and catalysis processes. The design and realization pave a new way of development and understanding of bifunctional electrocatalyst towards clean electrochemical energy technologies. 展开更多
关键词 bimetallic metal-organic frameworks carbon nanostructures ELECTROCATALYSTS oxygen redox reactions nitrogen and sulfur doping
原文传递
S-enriched porous polymer derived N-doped porous carbons for electrochemical energy storage and conversion 被引量:4
18
作者 Chao Zhang Chenbao Lu +8 位作者 Shuai Bi Yang Hou Fan Zhang Ming Cai Yafei He Silvia Paasch Xinliang Feng Eike Brunner Xiaodong Zhuang 《Frontiers of Chemical Science and Engineering》 SCIE EI CAS CSCD 2018年第3期346-357,共12页
Porous polymers have been recently recog- nized as one of the most important precursors for fabrication of heteroatom-doped porous carbons due to the intrinsic porous structure, easy available heteroatom- containing m... Porous polymers have been recently recog- nized as one of the most important precursors for fabrication of heteroatom-doped porous carbons due to the intrinsic porous structure, easy available heteroatom- containing monomers and versatile polymerization meth- ods. However, the heteroatom elements in as-produced porous carbons are quite relied on monomers. So far, the manipulating of heteroatom in porous polymer derived porous carbons are still very rare and challenge. In this work, a sulfur-enriched porous polymer, which was prepared from a diacetylene-linked porous polymer, was used as precursor to prepare S-doped and/or N-doped porous carbons under nitrogen and/or ammonia atmo- spheres. Remarkably, S content can sharply decrease from 36.3% to 0.05% after ammonia treatment. The N content and specific surface area of as-fabricated porous carbons can reach up to 1.32% and 1508 m^2·g^-1, respectively. As the electrode materials for electrical double-layer capacitors, as-fabricated porous carbons exhibit high specific capacitance of up to 431.6 F·g^-1 at 5 mW·s^-1 and excellent cycling stability of 99.74% capacitance retention after 3000 cycles at 100 mV·s^-1. Furthermore, as the electro- chemical catalysts for oxygen reduction reaction, as- fabricated porous carbons presented ultralow half-wave- potential of 0.78 V versus RHE. This work not only offers a new strategy for manipulating S and N doping features for the porous carbons derived from S-containing porous polymers, but also paves the way for the structure- performance interrelationship study of heteroatoms co- doped porous carbon for energy applications. 展开更多
关键词 porous polymers porous carbons sulfur and nitrogen doping SUPERCAPACITOR
原文传递
Active carbon supported S-promoted Bi catalysts for acetylene hydrochlorination reaction 被引量:1
19
作者 Di Hu Lu Wang +1 位作者 Feng Wang Jide Wang 《Chinese Chemical Letters》 SCIE CAS CSCD 2018年第9期1413-1416,共4页
In the present work, the sulfur doped bismuth-based catalysts were prepared by incipient wetness impregnation method and used for the hydrochlorination of acetylene to vinyl chloride monomer (VCM) in a fixed-bed rea... In the present work, the sulfur doped bismuth-based catalysts were prepared by incipient wetness impregnation method and used for the hydrochlorination of acetylene to vinyl chloride monomer (VCM) in a fixed-bed reactor. The effect of introduction of S was characterized by N2 adsorption-desorption, powder X-ray diffraction, transmission electron microscopy, thermogravimetric analysis, temperature-programmed reduction and X-ray photoelectron spectroscopy. The characterization results indicated that the doping of S resulted in the increase of Brunauer-Emmett-Teller (BET) surface areas and decrease of active species particle size for the Bi-based catalysts, which led to more accessible active sites, and consequently boosted the catalytic hydrochlorination activity. The effect of H2SO4 concentration on the activity of this type catalyst was examined, and the results showed that there is an optimal loading of H2SO4 (S/Bi=0.5 mol/mol), at which the conversion of C2H2 was enhanced to 81% under the reaction condition and coke deposition is a main reason for the deactivation of catalyst. 展开更多
关键词 Bi catalyst Acetylene hydrochlorination sulfur doped Active carbon Acetylene conversion
原文传递
A library of carbon-supported ultrasmall bimetallic nanoparticles
20
作者 Shi-Long Xu Shan-Cheng Shen +10 位作者 Ze-Yue Wei Shuai Zhao Lu-Jie Zuo Ming-Xi Chen Lei Wang Yan-Wei Ding Ping Chen Sheng-Qi Chu Yue Lin Kun Qian Hai-Wei Liang 《Nano Research》 SCIE EI CAS CSCD 2020年第10期2735-2740,共6页
Small-sized bimetallic nanoparticles that possess numerous accessible metal sites and optimal geometric/electronic structures show great promise for advanced synergetic catalysis but remain synthetic challenge so far.... Small-sized bimetallic nanoparticles that possess numerous accessible metal sites and optimal geometric/electronic structures show great promise for advanced synergetic catalysis but remain synthetic challenge so far.Here,an universial synthetic method is developed for building a library of bimetallic nanoparticles on mesoporous sulfur-doped carbon supports,consisting of 24 combinations of 3 noble metals(that is,Pt,Rh,Ir)and 7 other metals,with average particle sizes ranging from 0.7 to 1.4 nm.The synthetic strategy is based on the strong metal-support interaction arising from the metal-sulfur bonding,which suppresses the metal aggregation during the H2-reduction at 700℃ and ensure the formation of small-sized and alloyed bimetallic nanoparticles.The enhanced catalytic properties of the ultrasmall bimetallic nanoparticles are demonstrated in the dehydrogenation of propane at high temperature and oxidative dehydrogenations of N-heterocycles. 展开更多
关键词 bimeallic nanoparticles sulfur doped carbon CATALYSIS ultrasmall metal-support interaction
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部