期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Support effects on the chemical property and catalytic activity of Co-Mo HDS catalyst in sulfur recovery 被引量:7
1
作者 Ali Nakhaei Pour Ali Morad Rashidi +2 位作者 Kherolah Jafari Jozani Ali Mohajeri Payman Khorami 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2010年第1期91-95,共5页
Effects of carbon nanotubes (CNT) and alumina (γ-Al2O3) supports on the catalytic activities of hydrodesulfurization (HDS) process over Co- Mo catalyst have been studied. XRD results indicated that the main act... Effects of carbon nanotubes (CNT) and alumina (γ-Al2O3) supports on the catalytic activities of hydrodesulfurization (HDS) process over Co- Mo catalyst have been studied. XRD results indicated that the main active phases in CNT and γ-Al2O3 supported Co-Mo catalysts are MoO2 and MOO3, respectively. The TPR results reveal that the reduction peak temperatures of the active species on CNT supported Co-Mo catalyst is lower than those on alumina supported Co-Mo catalyst, indicating that the CNT supports favor the reduction of active species. Catalytic evaluation results displayed that the sulfur content in the reaction products on the CNT supported Co-Mo catalyst is lower than that on the alumina supported Co-Mo catalyst if the HDS reaction was carried out at a temperature above 583 K. 展开更多
关键词 sulfur recovery Co-Mo catalyst carbon nanotubes HDS process
下载PDF
An investigation of reaction furnace temperatures and sulfur recovery 被引量:1
2
作者 S.ASADI M.PAKIZEH M.POURAFSHARI CHENAR 《Frontiers of Chemical Science and Engineering》 SCIE EI CSCD 2011年第3期362-371,共10页
In a modern day sulfur recovery unit(SRU),hydrogen sulfide(H_(2)S)is converted to elemental sulfur using a modified Claus unit.A process simulator called TSWEET has been used to consider the Claus process.The effect o... In a modern day sulfur recovery unit(SRU),hydrogen sulfide(H_(2)S)is converted to elemental sulfur using a modified Claus unit.A process simulator called TSWEET has been used to consider the Claus process.The effect of the H_(2)S concentration,the H_(2)S/CO_(2) ratio,the input airflow rate,the acid gasflow of the acid gas(AG)splitter and the temperature of the acid gas feed at three different oxygen concentrations(in the air input)on the main burner temperature have been studied.Also the effects of the tail gas ratio and the catalytic bed type on the sulfur recovery were studied.The bed temperatures were optimized in order to enhance the sulfur recovery for a given acid gas feed and air input.Initially when the fraction of AG splitterflow to the main burner was increased,the temperature of the main burner increased to a maximum but then decreased sharply when theflow fraction was further increased;this was true for all three concentrations of oxygen.However,if three other parameters(the concentration of H_(2)S,the ratio H_(2)S/CO_(2) and theflow rate of air)were increased,the temperature of the main burner increased monotonically.This increase had differ-ent slopes depending on the oxygen concentration in the input air.But,by increasing the temperature of the acid gas feed,the temperature of the main burner decreased.In general,the concentration of oxygen in the input air into the Claus unit had little effect on the temperature of the main burner(This is true for all parameters).The optimal catalytic bed temperature,tail gas ratio and type of catalytic bed were also determined and these conditions are a minimum temperature of 300°C,a ratio of 2.0 and a hydrolysing Claus bed. 展开更多
关键词 Claus unit concentration of H_(2)S tail gas ratio sulfur recovery catalytic bed
原文传递
Microbial community functional structure in response to micro-aerobic conditions in sulfate-reducing sulfur-producing bioreactor 被引量:4
3
作者 Hao Yu Chuan Chen +3 位作者 Jincai Ma Xijun Xu Ronggui Fan Aijie Wang 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2014年第5期1099-1107,共9页
Limited oxygen supply to anaerobic wastewater treatment systems had been demonstrated as an effective strategy to improve elemental sulfur (So) recovery, coupling sulfate reduction and sulfide oxidation. However, li... Limited oxygen supply to anaerobic wastewater treatment systems had been demonstrated as an effective strategy to improve elemental sulfur (So) recovery, coupling sulfate reduction and sulfide oxidation. However, little is known about the impact of dissolved oxygen (DO) on the microbial functional structures in these systems. We used a high throughput tool (GeoChip) to evaluate the microbial community structures in a biological desulfurization reactor under micro-aerobic conditions (DO: 0.02-0.33 rag/L). The results indicated that the microbial community functional compositions and structures were dramatically altered with elevated DO levels. The abundances of dsrA/B genes involved in sulfate reduction processes significantly decreased (p 〈 0.05, LSD test) at relatively high DO concentration (DO: 0.33 mg/L). The abundances of sox and fccA/B genes involved in sulfur/sulfide oxidation processes significantly increased (p 〈 0.05, LSD test) in low DO concentration conditions (DO: 0.09 mg/L) and then gradually decreased with continuously elevated DO levels. Their abundances coincided with the change of sulfate removal efliciencies and elemental sulfur (S^0) conversion efficiencies in the bioreactor. In addition, the abundance of carbon degradation genes increased with the raising of DO levels, showing that the heterotrophic microorganisms (e.g., fermentative microorganisms) were thriving under micro-aerobic condition. This study provides new insights into the impacts of micro-aerobic conditions on the microbial functional structure of sulfate- reducing sulfur-producing bioreactors, and revealed the potential linkage between functional microbial communities and reactor performance. 展开更多
关键词 micro-aerobic condition elemental sulfur recovery microbial community functional gene array
原文传递
Regeneration of Fe_(2)O_(3)-based high-temperature coal gas desulfurization sorbent in atmosphere with sulfur dioxide
4
作者 Ruizhuang ZHAO Ju SHANGGUAN +3 位作者 Yanru LOU Jin SONG Jie MI Huiling FAN 《Frontiers of Chemical Science and Engineering》 SCIE EI CSCD 2010年第4期423-428,共6页
Regeneration of a high-temperature coal gas desulfurization sorbent is a key technology in its industrial applications.A Fe_(2)O_(3)-based high-temperature coal gas desulfurizer was prepared using red mud from steel f... Regeneration of a high-temperature coal gas desulfurization sorbent is a key technology in its industrial applications.A Fe_(2)O_(3)-based high-temperature coal gas desulfurizer was prepared using red mud from steel factory.The influences of regeneration temperature,space velocity and regeneration gas concentration in SO_(2) atmosphere on regeneration performances of the desulfurization sorbent were tested in a fixed bed reactor.The changes of phase and the composition of the Fe_(2)O_(3)-based high-temperature coal gas desulfurization sorbent before and after regeneration were examined by X-ray diffraction(XRD)and X-ray Photoelectron spectroscopy(XPS),and the changes of pore structure were characterized by the mercury intrusion method.The results show that the major products are Fe3O4 and elemental sulfur;the influences of regeneration temperature,space velocity and SO_(2) concentration in inlet on regeneration performances and the changes of pore structure of the desulfurization sorbent before and after regeneration are visible.The desulfurization sorbent cannot be regenerated at 500℃ in SO_(2) atmosphere.Within the range of 600℃-800℃,the time of regeneration becomes shorter,and the regeneration conversion increases as the temperature rises.The time of regeneration also becomes shorter,and the elemental sulfur content of tail gas increases as the SO_(2) concentration in inlet is increased.The increase in space velocity enhances the reactive course;the best VSP is 6000 h^(-1) for regeneration conversion.At 800℃,20 vol-%SO_(2) and 6000 h^(-1),the regeneration conversion can reach nearly to 90%. 展开更多
关键词 high-temperature coal gas Fe_(2)O_(3)desulfurization sorbent SO_(2)atmosphere regeneration behaviors sulfur recovery
原文传递
Influence of Mechanical Activation on Acid Leaching Dephosphorization of High-phosphorus Iron Ore Concentrates 被引量:1
5
作者 De-qing ZHU Hao WANG +1 位作者 Jian PAN Cong-cong YANG 《Journal of Iron and Steel Research(International)》 SCIE EI CAS CSCD 2016年第7期661-668,共8页
High pressure roll grinding(HPRG)and ball milling were compared to investigate the influence of mechanical activation on the acid leaching dephosphorization of a high-phosphorus iron ore concentrate,which was manufa... High pressure roll grinding(HPRG)and ball milling were compared to investigate the influence of mechanical activation on the acid leaching dephosphorization of a high-phosphorus iron ore concentrate,which was manufactured through magnetizing roasting-magnetic separation of high-phosphorus oolitic iron ores.The results indicated that when high-phosphorus iron ore concentrates containing 54.92 mass% iron and 0.76 mass% phosphorus were directly processed through acid leaching,iron ore concentrates containing 55.74mass%iron and 0.33mass%phosphorus with an iron recovery of 84.64%and dephosphorization of 63.79% were obtained.When high-phosphorus iron ore concentrates activated by ball milling were processed by acid leaching,iron ore concentrates containing56.03mass%iron and 0.21mass% phosphorus with an iron recovery of 85.65% and dephosphorization of 77.49%were obtained.Meanwhile,when high-phosphorus iron ore concentrates activated by HPRG were processed by acid leaching,iron ore concentrates containing 58.02mass%iron and 0.10mass% phosphorus were obtained,with the iron recovery reaching 88.42% and the dephosphorization rate reaching 88.99%.Mechanistic studies demonstrated that ball milling can reduce the particle size,demonstrating aprominent reunion phenomenon.In contrast,HPRG pretreatment contributes to the formation of more cracks within the particles and selective dissociation of iron and P bearing minerals,which can provide the favorable kinetic conditions to accelerate the solid-liquid reaction rate.As such,the crystal structure is destroyed and the surface energy of mineral particles is strengthened by mechanical activation,further strengthening the dephosphorization. 展开更多
关键词 high-phosphorus iron ore concentrate high pressure roll grinding ball milling selective dissociation sulfuric acid leaching dephosphorization iron recovery
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部