With vigorous developments in nanotechnology,the elaborate regulation of microstructure shows attractive potential in the design of electromagnetic wave absorbers.Herein,a hierarchical porous structure and composite h...With vigorous developments in nanotechnology,the elaborate regulation of microstructure shows attractive potential in the design of electromagnetic wave absorbers.Herein,a hierarchical porous structure and composite heterogeneous interface are constructed successfully to optimize the electromagnetic loss capacity.The macro–micro-synergistic graphene aerogel formed by the ice template‑assisted 3D printing strategy is cut by silicon carbide nanowires(SiC_(nws))grown in situ,while boron nitride(BN)interfacial structure is introduced on graphene nanoplates.The unique composite structure forces multiple scattering of incident EMWs,ensuring the combined effects of interfacial polarization,conduction networks,and magnetic-dielectric synergy.Therefore,the as-prepared composites present a minimum reflection loss value of−37.8 dB and a wide effective absorption bandwidth(EAB)of 9.2 GHz(from 8.8 to 18.0 GHz)at 2.5 mm.Besides,relying on the intrinsic high-temperature resistance of SiC_(nws) and BN,the EAB also remains above 5.0 GHz after annealing in air environment at 600℃ for 10 h.展开更多
Stemming from the unique in-plane honeycomb lattice structure and the sp^(2)hybridized carbon atoms bonded by exceptionally strong carbon–carbon bonds,graphene exhibits remarkable anisotropic electrical,mechanical,an...Stemming from the unique in-plane honeycomb lattice structure and the sp^(2)hybridized carbon atoms bonded by exceptionally strong carbon–carbon bonds,graphene exhibits remarkable anisotropic electrical,mechanical,and thermal properties.To maximize the utilization of graphene’s in-plane properties,pre-constructed and aligned structures,such as oriented aerogels,films,and fibers,have been designed.The unique combination of aligned structure,high surface area,excellent electrical conductivity,mechanical stability,thermal conductivity,and porous nature of highly aligned graphene aerogels allows for tailored and enhanced performance in specific directions,enabling advancements in diverse fields.This review provides a comprehensive overview of recent advances in highly aligned graphene aerogels and their composites.It highlights the fabrication methods of aligned graphene aerogels and the optimization of alignment which can be estimated both qualitatively and quantitatively.The oriented scaffolds endow graphene aerogels and their composites with anisotropic properties,showing enhanced electrical,mechanical,and thermal properties along the alignment at the sacrifice of the perpendicular direction.This review showcases remarkable properties and applications of aligned graphene aerogels and their composites,such as their suitability for electronics,environmental applications,thermal management,and energy storage.Challenges and potential opportunities are proposed to offer new insights into prospects of this material.展开更多
Graphene aerogel(GA),as a novel solid material,has shown great potential in engineering applications due to its unique mechanical properties.In this study,the mechanical performance of GA under high-velocity projectil...Graphene aerogel(GA),as a novel solid material,has shown great potential in engineering applications due to its unique mechanical properties.In this study,the mechanical performance of GA under high-velocity projectile impacts is thoroughly investigated using full-atomic molecular dynamics(MD)simulations.The study results show that the porous structure and density are key factors determining the mechanical response of GA under impact loading.Specifically,the impact-induced penetration of the projectile leads to the collapse of the pore structure,causing stretching and subsequent rupture of covalent bonds in graphene sheets.Moreover,the effects of temperature on the mechanical performance of GA have been proven to be minimal,thereby highlighting the mechanical stability of GA over a wide range of temperatures.Finally,the energy absorption density(EAD)and energy absorption efficiency(EAE)metrics are adopted to assess the energy absorption capacity of GA during projectile penetration.The research findings of this work demonstrate the significant potential of GA for energy absorption applications.展开更多
Resulting from the development of electric vehicles,high energy-density Li-S batteries have recently attracted ever-increasing attentions worldwide.However,continuous dissolution of cathodic sulfur and followed shuttl...Resulting from the development of electric vehicles,high energy-density Li-S batteries have recently attracted ever-increasing attentions worldwide.However,continuous dissolution of cathodic sulfur and followed shuttle effect of polysulfides lead to very limited service lifetime for currently-applied Li-S batteries.Herein,a 3 D porous graphene aerogel(GA)decorated with high exposure of anatase TiO2(001)nanoplatelets is proposed as robust host to immobilize cathodic sulfur.Compared with commonly used TiO2(101)nanoparticles,the Ti O2(001)nanoplatelets have highly matched lattices with graphene(002)nanosheets,thus facilitating the electronic transfer.The in-site assembled TiO2@GA host exhibits superior sulfur-immobilized capability,which cannot only entrap sulfur by physical confinement,but also capture dissoluble sulfurous species by chemical bonding.The fabricated S@TiO2@GA cathode shows excellent electrochemical performance with high discharge capacity,superior rate capability,and durable cycling stability as well,supposed to be a promising cathode for high-performance Li-S battery applications.展开更多
Supercapacitors with unique performance have been widely utilized in many fields. Herein, we report a nitrogen and sulfur co-doped graphene aerogel(N/S-GA-2) prepared using a low toxic precursor for high-performance s...Supercapacitors with unique performance have been widely utilized in many fields. Herein, we report a nitrogen and sulfur co-doped graphene aerogel(N/S-GA-2) prepared using a low toxic precursor for high-performance supercapacitors. The as-obtained material possesses a hierarchically porous structure and a large number of electrochemical active sites. At a current density of 1 Ag^-1, the specific capacitance of the N/S-GA-2 for supercapacitors with the ionic liquid as the electrolyte is 169.4 Fg^-1, and the corresponding energy density is 84.5 Wh kg^-1.At a power density of 8.9 k W kg^-1, the energy density can reach up to 75.7 Wh kg^-1, showing that the N/S-GA-2 has an excellent electrochemical performance. Consequently, the N/S-GA-2 can be used as a promising candidate of electrode materials for supercapacitors with high power density and high energy density.展开更多
Lithium sulfur battery(LSB)is a promising energy storage system to meet the increasing energy demands for electric vehicles and smart grid,while its wide commercialization is severely inhibited by the"shuttle eff...Lithium sulfur battery(LSB)is a promising energy storage system to meet the increasing energy demands for electric vehicles and smart grid,while its wide commercialization is severely inhibited by the"shuttle effect"of polysulfides,low utilization of sulfur cathode,and safety of lithium anode.To overcome these issues,herein,monodisperse polar NiCo_(2)O_(4)nanoparticles decorated porous graphene aerogel composite(NCO-GA)is proposed.The aerogel composite demonstrates high conductivity,hierarchical porous structure,high chemisorption capacity and excellent electrocatalytic ability,which effectively inhibits the"shuttle effect",promotes the ion/electron transport and increases the reaction kinetics.The NCO-GA/S cathode exhibits high discharge specific capacity(1214.1 mAh g^(-1)at 0.1 C),outstanding rate capability(435.7 mAh g^(-1)at 5 C)and remarkable cycle stability(decay of 0.031%/cycle over 1000 cycles).Quantitative analyses show that the physical adsorption provided by GA mainly contributes to the capacity of NCO-GA/S at low rate,while the chemical adsorption provided by polar NiCo_(2)O_(4)contributes mainly to the capacity of NCO-GA/S with the increase of current density and cycling.This work provides a new strategy for the design of GA-based composite with synergistic adsorption and electrocatalytic activity for the potential applications in LSB and related energy fields.展开更多
Photocatalysis is regarded as an ideal technology for solving the urgent environmental and energy issues that we face today.Among the reported photocatalysts,molybdenum disulfide(MoS2) is very promising for applicat...Photocatalysis is regarded as an ideal technology for solving the urgent environmental and energy issues that we face today.Among the reported photocatalysts,molybdenum disulfide(MoS2) is very promising for applications in hydrogen production and pollutant photodegradation.However,its lack of active sites and the difficulty of recovering catalysts in powder form have hindered its wide application.Here,we report the successful preparation of a macroscopic visible-light responsive MoS2/reduced graphene oxide(MoS2/RGO) aerogel.The obtained MoS2/RGO aerogel exhibits enhanced photocatalytic activity towards hydrogen production and photoreduction of Cr(Ⅵ) in comparison with the MoS2 powder.In addition,the low density(56.1 mg/cm^3) of the MoS2/RGO aerogel enables it to be used as an efficient adsorption material for organic pollutants.Our results demonstrate that this very promising multifunctional aerogel has potential applications in environmental remediation and clean energy production.展开更多
Coal-based graphene quantum dots(GQDs) were successfully produced via a one-step chemical synthesis from six different coal ranks, from which two superhigh organic sulfur(SHOS) coals were selected as natural S-doped c...Coal-based graphene quantum dots(GQDs) were successfully produced via a one-step chemical synthesis from six different coal ranks, from which two superhigh organic sulfur(SHOS) coals were selected as natural S-doped carbon sources for the preparation of S-doped GQDs. The effects of coal properties on coal-based GQDs were analyzed by means of high-resolution transmission electron microscopy(HRTEM), X-ray diffraction(XRD), Fourier transform infrared(FTIR) spectroscopy, X-ray photoelectron spectroscopy(XPS), ultraviolet-visible(UV-Vis) absorption spectroscopy, and fluorescence emission spectra. It was shown that all coal samples can be used to prepare GQDs, which emit bluegreen and blue fluorescence under ultraviolet light. Anthracite-based GQDs have a hexagonal crystal structure without defects, the largest size, and densely arranged carbon rings in their lamellae; the highrank bituminous coal-based GQDs are relatively reduced in size, with their hexagonal crystal structure being only faintly visible; the low-rank bituminous coal-based GQDs are the smallest, with sparse lattice fringes and visible internal defects. As the metamorphism of raw coals increases, the yield decreases and the fluorescence quantum yield(QY) initially increases and then decreases. Additionally, the surface of GQDs that were prepared using high-rank SHOS coal(high-rank bituminous coal) preserves rich sulfur content even after strong oxidation, which effectively adjusts the bandgap and improves the fluorescence QY. Thus, high-rank bituminous coal with SHOS content can be used as a natural S-doped carbon source to prepare S-doped GQDs, extending the clean utilization of low-grade coal.展开更多
In order to ensure the operational reliability and infor-mation security of sophisticated electronic components and to protect human health,efficient electromagnetic interference(EMI)shielding materials are required t...In order to ensure the operational reliability and infor-mation security of sophisticated electronic components and to protect human health,efficient electromagnetic interference(EMI)shielding materials are required to attenuate electromagnetic wave energy.In this work,the cellulose solution is obtained by dissolving cotton through hydrogen bond driving self-assembly using sodium hydroxide(NaOH)/urea solution,and cellulose aerogels(CA)are prepared by gelation and freeze-drying.Then,the cellulose carbon aerogel@reduced graphene oxide aerogels(CCA@rGO)are prepared by vacuum impregnation,freeze-drying followed by thermal annealing,and finally,the CCA@rGO/polydimethylsiloxane(PDMS)EMI shielding composites are prepared by backfilling with PDMS.Owing to skin-core structure of CCA@rGO,the complete three-dimensional(3D)double-layer con-ductive network can be successfully constructed.When the loading of CCA@rGO is 3.05 wt%,CCA@rGO/PDMS EMI shielding composites have an excellent EMI shielding effectiveness(EMI SE)of 51 dB,which is 3.9 times higher than that of the co-blended CCA/rGO/PDMS EMI shielding composites(13 dB)with the same loading of fillers.At this time,the CCA@rGO/PDMS EMI shielding composites have excellent thermal stability(T_(HRI) of 178.3℃)and good thermal conductivity coefficient(λ of 0.65 W m^(-1) K^(-1)).Excellent comprehensive performance makes CCA@rGO/PDMS EMI shielding composites great prospect for applications in lightweight,flexible EMI shielding composites.展开更多
Although thermally conductive graphene sheets are efficient in enhancing in-plane thermal conductivities of polymers,the resulting nanocomposites usually exhibit low through-plane thermal conductivities,limiting their...Although thermally conductive graphene sheets are efficient in enhancing in-plane thermal conductivities of polymers,the resulting nanocomposites usually exhibit low through-plane thermal conductivities,limiting their application as thermal interface materials.Herein,lamellarstructured polyamic acid salt/graphene oxide(PAAS/GO)hybrid aerogels are constructed by bidirectional freezing of PAAS/GO suspension followed by lyophilization.Subsequently,PAAS monomers are polymerized to polyimide(PI),while GO is converted to thermally reduced graphene oxide(RGO)during thermal annealing at 300℃.Final graphitization at 2800℃ converts PI to graphitized carbon with the inductive effect of RGO,and simultaneously,RGO is thermally reduced and healed to high-quality graphene.Consequently,lamellar-structured graphene aerogels with superior through-plane thermal conduction capacity are fabricated for the first time,and its superior through-plane thermal conduction capacity results from its vertically aligned and closely stacked high-quality graphene lamellae.After vacuum-assisted impregnation with epoxy,the resultant epoxy composite with 2.30 vol% of graphene exhibits an outstanding through-plane thermal conductivity of as high as 20.0 W m^−1 K^−1,100 times of that of epoxy,with a record-high specific thermal conductivity enhancement of 4310%.Furthermore,the lamellar-structured graphene aerogel endows epoxy with a high fracture toughness,~1.71 times of that of epoxy.展开更多
The major challenge for realistic application of Li-S batteries lies in the great difficulty in breaking through the obstacles of the sluggish kinetics and polysulfides shuttle of the sulfur cathode at high sulfur loa...The major challenge for realistic application of Li-S batteries lies in the great difficulty in breaking through the obstacles of the sluggish kinetics and polysulfides shuttle of the sulfur cathode at high sulfur loading for continuously high sulfur utilization during prolonged charge-discharge cycles.Here we demonstrate that large percentage of sulfur can be effectively incorporated within a three-dimensional(3D)nanofiber network of high quality graphene from chemical vapor deposition(CVD),through a simple ball-milling process.While high quality graphene network provided continuous and durable channels to enable efficient transport of lithium ions and electrons,the in-situ sulfur doping from the alloying effect of ball milling facilitated desirable affinity with entire sulfur species to prevent sulfur loss and highly active sites to propel sulfur redox reactions over cycling.This resulted in remarkable rate-performance and excellent cycling stability,together with large areal capacity at very high sulfur mass loading(Specific capacity over 666 mAh g-1after 300 cycles at 0.5 C,and areal capacity above 5.2 mAh cm-2at 0.2C at sulfur loading of 8.0 mg cm-2 and electrolyte/sulfur(E/S)ratio of 8μL mg-1;and high reversible areal capacities of 13.1 m Ah cm-2 at a sulfur load of 15 mg cm-2 and E/S of 5μL mg-1).展开更多
A nano sulfur-based composite cathode material featured by uniform core@shell-structured sulfur@polypyrrole nanoparticles sandwiched in three-dimensional graphene sheets conductive network(S@PPy/GS) is fabricated vi...A nano sulfur-based composite cathode material featured by uniform core@shell-structured sulfur@polypyrrole nanoparticles sandwiched in three-dimensional graphene sheets conductive network(S@PPy/GS) is fabricated via a facile solution-based method. The S@PPy nanoparticles are synthesized by in situ chemical oxidative polymerization of pyrrole on the surface of sulfur particles,and then graphene sheets are covered outside the S@PPy nanoparticles,forming a three-dimensional conductive network. When evaluating the electrochemical performance of S@PPy/GS in a lithium–sulfur battery,it delivers large discharge capacity,excellent cycle stability,and good rate capability. The initial discharge capacity is up to 1040 m Ah/g at 0.1 C,the capacity can remain 537.8 m Ah/g at 0.2 C after 200 cycles,even at a higher rate of 1 C,the specific capacity still reaches 566.5 m Ah/g. The good electrochemical performance is attributed to the unique structure of S@PPy/GS,which can not only provide an excellent transport of lithium and electron ions within the electrodes,but also retard the shuttle effect of soluble lithium polysulfides effectively,thus plays a positive role in building better lithium-sulfur batteries.展开更多
The design and synthesis of high‐performance and low‐cost electrocatalysts for the hydrogen evolution reaction(HER),a key half‐reaction in water electrolysis,are essential.Owing to their modest hydrogen adsorption ...The design and synthesis of high‐performance and low‐cost electrocatalysts for the hydrogen evolution reaction(HER),a key half‐reaction in water electrolysis,are essential.Owing to their modest hydrogen adsorption energy,ruthenium(Ru)‐based nanomaterials are considered outstanding candidates to replace the expensive platinum(Pt)‐based HER electrocatalysts.In this study,we developed an adsorption‐pyrolysis method to construct nitrogen(N)‐doped graphene aerogel(N‐GA)‐supported ultrafine Ru nanocrystal(Ru‐NC)nanocomposites(Ru‐NCs/N‐GA).The particle size of the Ru‐NCs and the conductivity of the N‐GA substrate can be controlled by varying the pyrolysis temperature.Optimal experiments reveal revealed that 10 wt%Ru‐NCs/N‐GA nanocomposites require overpotentials of only 52 and 36 mV to achieve a current density of 10 mA cm^(−2) in 1 mol/L HClO4 and 1 mol/L KOH electrolytes for HER,respectively,which is comparable to 20 wt%Pt/C electrocatalyst.Benefiting from the ultrafine size and uniform dispersion of the Ru‐NCs,the synergy between Ru and the highly conductive substrate,and the anchoring effect of the N atom,the Ru‐NCs/N‐GA nanocomposites exhibit excellent activity and durability in the pH‐universal HER,thereby opening a new avenue for the production of commercial HER electrocatalysts.展开更多
Sulfur/graphene composites with different sulfur contents were prepared by two-step synthesis, where graphene was regarded as a carrier of sulfur active substance. The surface structure and crystal form of the composi...Sulfur/graphene composites with different sulfur contents were prepared by two-step synthesis, where graphene was regarded as a carrier of sulfur active substance. The surface structure and crystal form of the composites obtained were characterized and compared by X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). It was found that sulfur was partially coated by graphene. The graphene folds provided more nano-pores and electron transport channels for sulfur. From TGA results, the sulfur contents of the sulfur/graphene compositcs measured were about 42.32 wt%, 54.94 wt%, and 65.23 wt%. Electrochemical tests demonstrated that sulfur/graphene composite (x=54.94 wt%) cathode exhibited better capacity retention (40.13%) compared with the pure cathode (20.46%), where an initial discharge capacity was up to 1 500 mAh.g-t and it remained about 600 mAh·g-1 after 30 cycles. Furthermore, the electrochemical reaction mechanism and the state of reaction interface for Li/S battery were analyzed by cyclic voltammogram and AC-impedance spectra. The results indicated that the sulfur/graphene composite with a sulfur content of 54.94 wt%, based on a two-step synthesis, contributed to improving electrochemical properties of lithium/sulfur battery展开更多
Anti-CO poisoning ability is significant in formic acid oxidation in the fuel cell technique.Herein,Pd Ni alloy supported on N-doped graphene aerogel(Pd Ni/GA-N)was found to have catalytic ability toward formic acid e...Anti-CO poisoning ability is significant in formic acid oxidation in the fuel cell technique.Herein,Pd Ni alloy supported on N-doped graphene aerogel(Pd Ni/GA-N)was found to have catalytic ability toward formic acid electrooxidation over a wide potential range because of the improved anti-CO poisoning ability.This catalyst was fabricated by simple freeze-drying of mixture solution of graphene aerogel,polyvinylpyrrolidone,Pd^(2+)and Ni^(2+)and the subsequent thermal annealing reduction approach in the N2/H2 atmosphere.Pd-Ni alloy particles anchored over the folding N-doped graphene surface with a porous hierarchical architecture structure in the 3 D directions.It showed the catalytic performance of its maximum mass activity of 836 m A mg^(-1)in a broad potential range(0.2-0.6 V)for formic acid oxidation.The CO stripping experiment demonstrated its largely improved anti-CO poisoning ability with the peak potential of 0.67 V,approximately 60 and 40 m V less compared to those of Pd/GA-N and Pd/C samples.The high anti-CO poisoning ability and strong electronic effect resulting from the interaction between the3 D GA-N support and the Pd-Ni alloy makes it a promising catalyst for application in direct formic acid fuel cells.展开更多
Reduced graphene oxide(rGO)aerogels are emerging as very attractive scaffolds for high-performance electromagnetic wave absorption materials(EWAMs)due to their intrinsic conductive networks and intricate interior micr...Reduced graphene oxide(rGO)aerogels are emerging as very attractive scaffolds for high-performance electromagnetic wave absorption materials(EWAMs)due to their intrinsic conductive networks and intricate interior microstructure,as well as good compatibility with other electromagnetic(EM)components.Herein,we realized the decoration of rGO aerogel with Mo_(2)C nanoparticles by sequential hydrothermal assembly,freeze-drying,and high-temperature pyrolysis.Results show that Mo_(2)C nanoparticle loading can be easily controlled by the ammonium molybdate to glucose molar ratio.The hydrophobicity and thermal insulation of the rGO aerogel are effectively improved upon the introduction of Mo_(2)C nanoparticles,and more importantly,these nanoparticles regulate the EM properties of the rGO aerogel to a large extent.Although more Mo_(2)C nanoparticles may decrease the overall attenuation ability of the rGO aerogel,they bring much better impedance matching.At a molar ratio of 1:1,a desirable balance between attenuation ability and impedance matching is observed.In this context,the Mo_(2)C/r GO aerogel displays strong reflection loss and broad response bandwidth,even with a small applied thickness(1.7 mm)and low filler loading(9.0wt%).The positive effects of Mo_(2)C nanoparticles on multifunctional properties may render Mo_(2)C/r GO aerogels promising candidates for high-performance EWAMs under harsh conditions.展开更多
Graphene aerogel was synthesized and used for the removal of methyl blue from aqueous solutions.The effect of solution pH,temperature and adsorption time on the adsorption performance of the graphene aerogel was studi...Graphene aerogel was synthesized and used for the removal of methyl blue from aqueous solutions.The effect of solution pH,temperature and adsorption time on the adsorption performance of the graphene aerogel was studied systematically.In addition,investigations were also performed to determine the nature of adsorption.The experimental results show that graphene aerogel is a highly efficient adsorbent for the treatment of methyl blue in aqueous solutions.In addition,the adsorption of methyl blue proceeds through a single layer physical adsorption on the graphene aerogel.The findings herein are useful for the future development of adsorbent for in water.展开更多
Aqueous rechargeable zinc ion batteries are very attractive in large-scale storage applications,because they have high safety,low cost and good durability.Nonetheless,their advancements are hindered by a dearth of pos...Aqueous rechargeable zinc ion batteries are very attractive in large-scale storage applications,because they have high safety,low cost and good durability.Nonetheless,their advancements are hindered by a dearth of positive host materials(cathode)due to sluggish diffusion of Zn2+in the solid inorganic frameworks.Here,we report a novel organic electrode material of poly 3,4,9,10-perylentetracarboxylic dianhydride(PPTCDA)/graphene aerogel(GA).The 3D interconnected porous architecture synthesized through a simple solvothermal reaction,where the PPTCDA is homogenously embedded in the GA nanosheets.The self-assembly of PPTCDA/GA coin-type cell will not only significantly improve the durability and extend lifetime of the devices,but also reduce the electronic waste and economic cost.The self-assembled structure does not require the auxiliary electrode and conductive agent to prepare the electrode material,which is a simple method for preparing the coin-type cell and a foundation for the next large-scale production.The PPTCDA/GA delivers a high capacity of≥200 m Ah g^–1 with the voltage of 0.0~1.5 V.After 300 cycles,the capacity retention rate still close to 100%.The discussion on the mechanism of Zn2+intercalation/deintercalation in the PPTCDA/GA electrode is explored by Fourier transform infrared spectrometer(FT-IR),X-ray diffraction(XRD)and X-ray photoelectron spectroscopy(XPS)characterizations.The morphology and structure of PPTCDA/GA are examined by scanning electron microscopy(SEM)and transmission electron microscopy(TEM).展开更多
Lithium–sulfur batteries have great potential for high energy applications due to their high capacities,low cost and eco-friendliness. However, the particularly rapid capacity decay owing to the dissolution and diffu...Lithium–sulfur batteries have great potential for high energy applications due to their high capacities,low cost and eco-friendliness. However, the particularly rapid capacity decay owing to the dissolution and diffusion of polysulfide intermediate into the electrolyte still hamper their practical applications.And the reported preparation procedures to sulfur based cathode materials are often complex, and hence are rather difficult to produce at large scale. Here, we report a simple mechano-chemical sulfurization methodology in vacuum environment applying ball-milling method combined both the chemical and physical interaction for the one-pot synthesis of edge-sulfurized grapheme nanoplatelets with 3D porous foam structure as cathode materials. The optimal sample of 70%S–Gn Ps-48 h(ball-milled 48 h) obtains 13.2 wt% sulfur that chemically bonded onto the edge of Gn Ps. And the assembled batteries exhibit high initial discharge capacities of 1089 mAh/g at 0.1 C and 950 mAh/g at 0.5 C, and retain a stable discharge capacity of 776 mAh/g after 250 cycles at 0.5 C with a high Coulombic efficiency of over 98%. The excellent performance is mainly attributed to the mechano-chemical interaction between sulfur and grapheme nanoplatelets. This definitely triggers the currently extensive research in lithium–sulfur battery area.展开更多
The rapid development of flexible electronic devices requires the design of flexible energy-storage devices. Lithium-sulfur(Li-S) batteries are attracting much interest due to their high energy density. Therefore, fle...The rapid development of flexible electronic devices requires the design of flexible energy-storage devices. Lithium-sulfur(Li-S) batteries are attracting much interest due to their high energy density. Therefore, flexible Li-S batteries with high areal capacity are desired. Herein, we fabricated freestanding reduced graphene oxide-sulfur(RGO@S) composite films with a cross-linked structure using a blade coating technique, followed by a subsequent chemical reduction. The porous cross-linked structure endows the composite films with excellent electrochemical performance. The batteries based on RGO@S composite films could exhibit a high discharge capacity of 1381 m Ah/g at 0.1 C and excellent cycle stability. Furthermore, the freestanding composite film possesses excellent conductivity and high mechanical strength. Therefore, they can be used as the cathodes of flexible Li-S batteries. As a proof of concept, soft-packaged Li-S batteries were assembled and remained stable electrochemical performance under different bending states.展开更多
基金sponsored by National Natural Science Foundation of China(No.52302121,No.52203386)Shanghai Sailing Program(No.23YF1454700)+1 种基金Shanghai Natural Science Foundation(No.23ZR1472700)Shanghai Post-doctoral Excellent Program(No.2022664).
文摘With vigorous developments in nanotechnology,the elaborate regulation of microstructure shows attractive potential in the design of electromagnetic wave absorbers.Herein,a hierarchical porous structure and composite heterogeneous interface are constructed successfully to optimize the electromagnetic loss capacity.The macro–micro-synergistic graphene aerogel formed by the ice template‑assisted 3D printing strategy is cut by silicon carbide nanowires(SiC_(nws))grown in situ,while boron nitride(BN)interfacial structure is introduced on graphene nanoplates.The unique composite structure forces multiple scattering of incident EMWs,ensuring the combined effects of interfacial polarization,conduction networks,and magnetic-dielectric synergy.Therefore,the as-prepared composites present a minimum reflection loss value of−37.8 dB and a wide effective absorption bandwidth(EAB)of 9.2 GHz(from 8.8 to 18.0 GHz)at 2.5 mm.Besides,relying on the intrinsic high-temperature resistance of SiC_(nws) and BN,the EAB also remains above 5.0 GHz after annealing in air environment at 600℃ for 10 h.
基金The financial support by the National Natural Science Foundation of China(No.52002020)is acknowledged.
文摘Stemming from the unique in-plane honeycomb lattice structure and the sp^(2)hybridized carbon atoms bonded by exceptionally strong carbon–carbon bonds,graphene exhibits remarkable anisotropic electrical,mechanical,and thermal properties.To maximize the utilization of graphene’s in-plane properties,pre-constructed and aligned structures,such as oriented aerogels,films,and fibers,have been designed.The unique combination of aligned structure,high surface area,excellent electrical conductivity,mechanical stability,thermal conductivity,and porous nature of highly aligned graphene aerogels allows for tailored and enhanced performance in specific directions,enabling advancements in diverse fields.This review provides a comprehensive overview of recent advances in highly aligned graphene aerogels and their composites.It highlights the fabrication methods of aligned graphene aerogels and the optimization of alignment which can be estimated both qualitatively and quantitatively.The oriented scaffolds endow graphene aerogels and their composites with anisotropic properties,showing enhanced electrical,mechanical,and thermal properties along the alignment at the sacrifice of the perpendicular direction.This review showcases remarkable properties and applications of aligned graphene aerogels and their composites,such as their suitability for electronics,environmental applications,thermal management,and energy storage.Challenges and potential opportunities are proposed to offer new insights into prospects of this material.
基金supported by the National Natural Science Foundation of China(No.12102256).
文摘Graphene aerogel(GA),as a novel solid material,has shown great potential in engineering applications due to its unique mechanical properties.In this study,the mechanical performance of GA under high-velocity projectile impacts is thoroughly investigated using full-atomic molecular dynamics(MD)simulations.The study results show that the porous structure and density are key factors determining the mechanical response of GA under impact loading.Specifically,the impact-induced penetration of the projectile leads to the collapse of the pore structure,causing stretching and subsequent rupture of covalent bonds in graphene sheets.Moreover,the effects of temperature on the mechanical performance of GA have been proven to be minimal,thereby highlighting the mechanical stability of GA over a wide range of temperatures.Finally,the energy absorption density(EAD)and energy absorption efficiency(EAE)metrics are adopted to assess the energy absorption capacity of GA during projectile penetration.The research findings of this work demonstrate the significant potential of GA for energy absorption applications.
基金financially supported by the National Key R and D Program of China(No.2019YFA0210300)the Hunan Provincial Natural Science Foundation of China(No.2019JJ40359)+1 种基金the Hunan Provincial S and T Plan of China(Nos.2017TP1001,2016TP1007)the Open-End Fund for the Valuable and Precision Instruments of Central South University(CSUZC2020016)。
文摘Resulting from the development of electric vehicles,high energy-density Li-S batteries have recently attracted ever-increasing attentions worldwide.However,continuous dissolution of cathodic sulfur and followed shuttle effect of polysulfides lead to very limited service lifetime for currently-applied Li-S batteries.Herein,a 3 D porous graphene aerogel(GA)decorated with high exposure of anatase TiO2(001)nanoplatelets is proposed as robust host to immobilize cathodic sulfur.Compared with commonly used TiO2(101)nanoparticles,the Ti O2(001)nanoplatelets have highly matched lattices with graphene(002)nanosheets,thus facilitating the electronic transfer.The in-site assembled TiO2@GA host exhibits superior sulfur-immobilized capability,which cannot only entrap sulfur by physical confinement,but also capture dissoluble sulfurous species by chemical bonding.The fabricated S@TiO2@GA cathode shows excellent electrochemical performance with high discharge capacity,superior rate capability,and durable cycling stability as well,supposed to be a promising cathode for high-performance Li-S battery applications.
基金Financial support from the National Natural Science Foundation of China (Nos. 21873026 and 21573058)the Program for Innovative Research Team in Science and Technology in University of Henan Province (17IRTSTHN 001) is gratefully acknowledged
文摘Supercapacitors with unique performance have been widely utilized in many fields. Herein, we report a nitrogen and sulfur co-doped graphene aerogel(N/S-GA-2) prepared using a low toxic precursor for high-performance supercapacitors. The as-obtained material possesses a hierarchically porous structure and a large number of electrochemical active sites. At a current density of 1 Ag^-1, the specific capacitance of the N/S-GA-2 for supercapacitors with the ionic liquid as the electrolyte is 169.4 Fg^-1, and the corresponding energy density is 84.5 Wh kg^-1.At a power density of 8.9 k W kg^-1, the energy density can reach up to 75.7 Wh kg^-1, showing that the N/S-GA-2 has an excellent electrochemical performance. Consequently, the N/S-GA-2 can be used as a promising candidate of electrode materials for supercapacitors with high power density and high energy density.
基金supported by the National Natural Science Foundation of China(51974209)the Outstanding Doctoral Award Fund in Shanxi Province(20202017)。
文摘Lithium sulfur battery(LSB)is a promising energy storage system to meet the increasing energy demands for electric vehicles and smart grid,while its wide commercialization is severely inhibited by the"shuttle effect"of polysulfides,low utilization of sulfur cathode,and safety of lithium anode.To overcome these issues,herein,monodisperse polar NiCo_(2)O_(4)nanoparticles decorated porous graphene aerogel composite(NCO-GA)is proposed.The aerogel composite demonstrates high conductivity,hierarchical porous structure,high chemisorption capacity and excellent electrocatalytic ability,which effectively inhibits the"shuttle effect",promotes the ion/electron transport and increases the reaction kinetics.The NCO-GA/S cathode exhibits high discharge specific capacity(1214.1 mAh g^(-1)at 0.1 C),outstanding rate capability(435.7 mAh g^(-1)at 5 C)and remarkable cycle stability(decay of 0.031%/cycle over 1000 cycles).Quantitative analyses show that the physical adsorption provided by GA mainly contributes to the capacity of NCO-GA/S at low rate,while the chemical adsorption provided by polar NiCo_(2)O_(4)contributes mainly to the capacity of NCO-GA/S with the increase of current density and cycling.This work provides a new strategy for the design of GA-based composite with synergistic adsorption and electrocatalytic activity for the potential applications in LSB and related energy fields.
基金supported by the National Natural Science Foundation of China (U1232119, 21403172)the Sichuan Youth Science and Technology Foundation (2013JQ0034, 2014JQ0017)the Innovative Research Team of Sichuan Province (2016TD0011)~~
文摘Photocatalysis is regarded as an ideal technology for solving the urgent environmental and energy issues that we face today.Among the reported photocatalysts,molybdenum disulfide(MoS2) is very promising for applications in hydrogen production and pollutant photodegradation.However,its lack of active sites and the difficulty of recovering catalysts in powder form have hindered its wide application.Here,we report the successful preparation of a macroscopic visible-light responsive MoS2/reduced graphene oxide(MoS2/RGO) aerogel.The obtained MoS2/RGO aerogel exhibits enhanced photocatalytic activity towards hydrogen production and photoreduction of Cr(Ⅵ) in comparison with the MoS2 powder.In addition,the low density(56.1 mg/cm^3) of the MoS2/RGO aerogel enables it to be used as an efficient adsorption material for organic pollutants.Our results demonstrate that this very promising multifunctional aerogel has potential applications in environmental remediation and clean energy production.
基金supported by the National Natural Science Foundation of China (grant No. 41172146)National Key Basic Research Program of China (grant No. 2014CB238905)
文摘Coal-based graphene quantum dots(GQDs) were successfully produced via a one-step chemical synthesis from six different coal ranks, from which two superhigh organic sulfur(SHOS) coals were selected as natural S-doped carbon sources for the preparation of S-doped GQDs. The effects of coal properties on coal-based GQDs were analyzed by means of high-resolution transmission electron microscopy(HRTEM), X-ray diffraction(XRD), Fourier transform infrared(FTIR) spectroscopy, X-ray photoelectron spectroscopy(XPS), ultraviolet-visible(UV-Vis) absorption spectroscopy, and fluorescence emission spectra. It was shown that all coal samples can be used to prepare GQDs, which emit bluegreen and blue fluorescence under ultraviolet light. Anthracite-based GQDs have a hexagonal crystal structure without defects, the largest size, and densely arranged carbon rings in their lamellae; the highrank bituminous coal-based GQDs are relatively reduced in size, with their hexagonal crystal structure being only faintly visible; the low-rank bituminous coal-based GQDs are the smallest, with sparse lattice fringes and visible internal defects. As the metamorphism of raw coals increases, the yield decreases and the fluorescence quantum yield(QY) initially increases and then decreases. Additionally, the surface of GQDs that were prepared using high-rank SHOS coal(high-rank bituminous coal) preserves rich sulfur content even after strong oxidation, which effectively adjusts the bandgap and improves the fluorescence QY. Thus, high-rank bituminous coal with SHOS content can be used as a natural S-doped carbon source to prepare S-doped GQDs, extending the clean utilization of low-grade coal.
基金the Foundation of National Natural Science Foundation of China(51773169 and 51973173)the Natural Science Basic Research Plan for Distinguished Young Scholars in Shaanxi Province of China(2019JC-11)+2 种基金the Natural Science Basic Research Plan in Shaanxi Province of China(2020JQ-164)Y.Q.Guo thanks the Innovation Foundation for Doctor Dissertation of Northwestern Polytechnical University(CX202055)Polymer Electromagnetic Functional Materials Innovation Team of Shaanxi Sanqin Scholars.
文摘In order to ensure the operational reliability and infor-mation security of sophisticated electronic components and to protect human health,efficient electromagnetic interference(EMI)shielding materials are required to attenuate electromagnetic wave energy.In this work,the cellulose solution is obtained by dissolving cotton through hydrogen bond driving self-assembly using sodium hydroxide(NaOH)/urea solution,and cellulose aerogels(CA)are prepared by gelation and freeze-drying.Then,the cellulose carbon aerogel@reduced graphene oxide aerogels(CCA@rGO)are prepared by vacuum impregnation,freeze-drying followed by thermal annealing,and finally,the CCA@rGO/polydimethylsiloxane(PDMS)EMI shielding composites are prepared by backfilling with PDMS.Owing to skin-core structure of CCA@rGO,the complete three-dimensional(3D)double-layer con-ductive network can be successfully constructed.When the loading of CCA@rGO is 3.05 wt%,CCA@rGO/PDMS EMI shielding composites have an excellent EMI shielding effectiveness(EMI SE)of 51 dB,which is 3.9 times higher than that of the co-blended CCA/rGO/PDMS EMI shielding composites(13 dB)with the same loading of fillers.At this time,the CCA@rGO/PDMS EMI shielding composites have excellent thermal stability(T_(HRI) of 178.3℃)and good thermal conductivity coefficient(λ of 0.65 W m^(-1) K^(-1)).Excellent comprehensive performance makes CCA@rGO/PDMS EMI shielding composites great prospect for applications in lightweight,flexible EMI shielding composites.
基金Financial support from the National Natural Science Foundation of China(51773008,51533001,U1905217)the National Key Research and Development Program of China(2016YFC0801302)is gratefully acknowledged.
文摘Although thermally conductive graphene sheets are efficient in enhancing in-plane thermal conductivities of polymers,the resulting nanocomposites usually exhibit low through-plane thermal conductivities,limiting their application as thermal interface materials.Herein,lamellarstructured polyamic acid salt/graphene oxide(PAAS/GO)hybrid aerogels are constructed by bidirectional freezing of PAAS/GO suspension followed by lyophilization.Subsequently,PAAS monomers are polymerized to polyimide(PI),while GO is converted to thermally reduced graphene oxide(RGO)during thermal annealing at 300℃.Final graphitization at 2800℃ converts PI to graphitized carbon with the inductive effect of RGO,and simultaneously,RGO is thermally reduced and healed to high-quality graphene.Consequently,lamellar-structured graphene aerogels with superior through-plane thermal conduction capacity are fabricated for the first time,and its superior through-plane thermal conduction capacity results from its vertically aligned and closely stacked high-quality graphene lamellae.After vacuum-assisted impregnation with epoxy,the resultant epoxy composite with 2.30 vol% of graphene exhibits an outstanding through-plane thermal conductivity of as high as 20.0 W m^−1 K^−1,100 times of that of epoxy,with a record-high specific thermal conductivity enhancement of 4310%.Furthermore,the lamellar-structured graphene aerogel endows epoxy with a high fracture toughness,~1.71 times of that of epoxy.
基金supported by the National Natural Science Foundation of China (Nos.51972287, 51502269)Natural Science Foundation of Henan Province (No.182300410187)Outstanding Young Talent Research Fund of Zhengzhou University (No.1521320023)。
文摘The major challenge for realistic application of Li-S batteries lies in the great difficulty in breaking through the obstacles of the sluggish kinetics and polysulfides shuttle of the sulfur cathode at high sulfur loading for continuously high sulfur utilization during prolonged charge-discharge cycles.Here we demonstrate that large percentage of sulfur can be effectively incorporated within a three-dimensional(3D)nanofiber network of high quality graphene from chemical vapor deposition(CVD),through a simple ball-milling process.While high quality graphene network provided continuous and durable channels to enable efficient transport of lithium ions and electrons,the in-situ sulfur doping from the alloying effect of ball milling facilitated desirable affinity with entire sulfur species to prevent sulfur loss and highly active sites to propel sulfur redox reactions over cycling.This resulted in remarkable rate-performance and excellent cycling stability,together with large areal capacity at very high sulfur mass loading(Specific capacity over 666 mAh g-1after 300 cycles at 0.5 C,and areal capacity above 5.2 mAh cm-2at 0.2C at sulfur loading of 8.0 mg cm-2 and electrolyte/sulfur(E/S)ratio of 8μL mg-1;and high reversible areal capacities of 13.1 m Ah cm-2 at a sulfur load of 15 mg cm-2 and E/S of 5μL mg-1).
文摘A nano sulfur-based composite cathode material featured by uniform core@shell-structured sulfur@polypyrrole nanoparticles sandwiched in three-dimensional graphene sheets conductive network(S@PPy/GS) is fabricated via a facile solution-based method. The S@PPy nanoparticles are synthesized by in situ chemical oxidative polymerization of pyrrole on the surface of sulfur particles,and then graphene sheets are covered outside the S@PPy nanoparticles,forming a three-dimensional conductive network. When evaluating the electrochemical performance of S@PPy/GS in a lithium–sulfur battery,it delivers large discharge capacity,excellent cycle stability,and good rate capability. The initial discharge capacity is up to 1040 m Ah/g at 0.1 C,the capacity can remain 537.8 m Ah/g at 0.2 C after 200 cycles,even at a higher rate of 1 C,the specific capacity still reaches 566.5 m Ah/g. The good electrochemical performance is attributed to the unique structure of S@PPy/GS,which can not only provide an excellent transport of lithium and electron ions within the electrodes,but also retard the shuttle effect of soluble lithium polysulfides effectively,thus plays a positive role in building better lithium-sulfur batteries.
文摘The design and synthesis of high‐performance and low‐cost electrocatalysts for the hydrogen evolution reaction(HER),a key half‐reaction in water electrolysis,are essential.Owing to their modest hydrogen adsorption energy,ruthenium(Ru)‐based nanomaterials are considered outstanding candidates to replace the expensive platinum(Pt)‐based HER electrocatalysts.In this study,we developed an adsorption‐pyrolysis method to construct nitrogen(N)‐doped graphene aerogel(N‐GA)‐supported ultrafine Ru nanocrystal(Ru‐NC)nanocomposites(Ru‐NCs/N‐GA).The particle size of the Ru‐NCs and the conductivity of the N‐GA substrate can be controlled by varying the pyrolysis temperature.Optimal experiments reveal revealed that 10 wt%Ru‐NCs/N‐GA nanocomposites require overpotentials of only 52 and 36 mV to achieve a current density of 10 mA cm^(−2) in 1 mol/L HClO4 and 1 mol/L KOH electrolytes for HER,respectively,which is comparable to 20 wt%Pt/C electrocatalyst.Benefiting from the ultrafine size and uniform dispersion of the Ru‐NCs,the synergy between Ru and the highly conductive substrate,and the anchoring effect of the N atom,the Ru‐NCs/N‐GA nanocomposites exhibit excellent activity and durability in the pH‐universal HER,thereby opening a new avenue for the production of commercial HER electrocatalysts.
基金Funded partly by the Science and Technology Support Program of Hebei(No.11215114D)
文摘Sulfur/graphene composites with different sulfur contents were prepared by two-step synthesis, where graphene was regarded as a carrier of sulfur active substance. The surface structure and crystal form of the composites obtained were characterized and compared by X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). It was found that sulfur was partially coated by graphene. The graphene folds provided more nano-pores and electron transport channels for sulfur. From TGA results, the sulfur contents of the sulfur/graphene compositcs measured were about 42.32 wt%, 54.94 wt%, and 65.23 wt%. Electrochemical tests demonstrated that sulfur/graphene composite (x=54.94 wt%) cathode exhibited better capacity retention (40.13%) compared with the pure cathode (20.46%), where an initial discharge capacity was up to 1 500 mAh.g-t and it remained about 600 mAh·g-1 after 30 cycles. Furthermore, the electrochemical reaction mechanism and the state of reaction interface for Li/S battery were analyzed by cyclic voltammogram and AC-impedance spectra. The results indicated that the sulfur/graphene composite with a sulfur content of 54.94 wt%, based on a two-step synthesis, contributed to improving electrochemical properties of lithium/sulfur battery
基金supported by the National Natural Science Foundation of China(21972124,21603041)a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institution+1 种基金the Double Tops Joint Fund of the Yunnan Science and Technology Bureau and Yunnan University(2019FY003025)the Research Foundation of Department of Education of Yunnan Province(2020Y0018)。
文摘Anti-CO poisoning ability is significant in formic acid oxidation in the fuel cell technique.Herein,Pd Ni alloy supported on N-doped graphene aerogel(Pd Ni/GA-N)was found to have catalytic ability toward formic acid electrooxidation over a wide potential range because of the improved anti-CO poisoning ability.This catalyst was fabricated by simple freeze-drying of mixture solution of graphene aerogel,polyvinylpyrrolidone,Pd^(2+)and Ni^(2+)and the subsequent thermal annealing reduction approach in the N2/H2 atmosphere.Pd-Ni alloy particles anchored over the folding N-doped graphene surface with a porous hierarchical architecture structure in the 3 D directions.It showed the catalytic performance of its maximum mass activity of 836 m A mg^(-1)in a broad potential range(0.2-0.6 V)for formic acid oxidation.The CO stripping experiment demonstrated its largely improved anti-CO poisoning ability with the peak potential of 0.67 V,approximately 60 and 40 m V less compared to those of Pd/GA-N and Pd/C samples.The high anti-CO poisoning ability and strong electronic effect resulting from the interaction between the3 D GA-N support and the Pd-Ni alloy makes it a promising catalyst for application in direct formic acid fuel cells.
基金supported by the China Postdoctoral Science Foundation(No.2021MD703944)the Fund of Science and Technology on Near-Surface Detection Laboratory(No.6142414211808)+1 种基金the Director Fund of State Key Laboratory of Pulsed Power Laser Technology(No.SKL2021ZR06)the National Natural Science Foundation of China(No.21776053)。
文摘Reduced graphene oxide(rGO)aerogels are emerging as very attractive scaffolds for high-performance electromagnetic wave absorption materials(EWAMs)due to their intrinsic conductive networks and intricate interior microstructure,as well as good compatibility with other electromagnetic(EM)components.Herein,we realized the decoration of rGO aerogel with Mo_(2)C nanoparticles by sequential hydrothermal assembly,freeze-drying,and high-temperature pyrolysis.Results show that Mo_(2)C nanoparticle loading can be easily controlled by the ammonium molybdate to glucose molar ratio.The hydrophobicity and thermal insulation of the rGO aerogel are effectively improved upon the introduction of Mo_(2)C nanoparticles,and more importantly,these nanoparticles regulate the EM properties of the rGO aerogel to a large extent.Although more Mo_(2)C nanoparticles may decrease the overall attenuation ability of the rGO aerogel,they bring much better impedance matching.At a molar ratio of 1:1,a desirable balance between attenuation ability and impedance matching is observed.In this context,the Mo_(2)C/r GO aerogel displays strong reflection loss and broad response bandwidth,even with a small applied thickness(1.7 mm)and low filler loading(9.0wt%).The positive effects of Mo_(2)C nanoparticles on multifunctional properties may render Mo_(2)C/r GO aerogels promising candidates for high-performance EWAMs under harsh conditions.
基金Funded by the Natural Science Foundation of Hubei Province(2018CFB785)。
文摘Graphene aerogel was synthesized and used for the removal of methyl blue from aqueous solutions.The effect of solution pH,temperature and adsorption time on the adsorption performance of the graphene aerogel was studied systematically.In addition,investigations were also performed to determine the nature of adsorption.The experimental results show that graphene aerogel is a highly efficient adsorbent for the treatment of methyl blue in aqueous solutions.In addition,the adsorption of methyl blue proceeds through a single layer physical adsorption on the graphene aerogel.The findings herein are useful for the future development of adsorbent for in water.
基金supported by the National Natural Science Foundation of China(51672056)Excellent Youth Project of Natural Science Foundation of Heilongjiang Province of China(YQ2019B002)+1 种基金China Postdoctoral Science Foundation(2018M630307 and 2019T120220)Fundamental Research Funds for the Central Universities(HEUCFD201732)。
文摘Aqueous rechargeable zinc ion batteries are very attractive in large-scale storage applications,because they have high safety,low cost and good durability.Nonetheless,their advancements are hindered by a dearth of positive host materials(cathode)due to sluggish diffusion of Zn2+in the solid inorganic frameworks.Here,we report a novel organic electrode material of poly 3,4,9,10-perylentetracarboxylic dianhydride(PPTCDA)/graphene aerogel(GA).The 3D interconnected porous architecture synthesized through a simple solvothermal reaction,where the PPTCDA is homogenously embedded in the GA nanosheets.The self-assembly of PPTCDA/GA coin-type cell will not only significantly improve the durability and extend lifetime of the devices,but also reduce the electronic waste and economic cost.The self-assembled structure does not require the auxiliary electrode and conductive agent to prepare the electrode material,which is a simple method for preparing the coin-type cell and a foundation for the next large-scale production.The PPTCDA/GA delivers a high capacity of≥200 m Ah g^–1 with the voltage of 0.0~1.5 V.After 300 cycles,the capacity retention rate still close to 100%.The discussion on the mechanism of Zn2+intercalation/deintercalation in the PPTCDA/GA electrode is explored by Fourier transform infrared spectrometer(FT-IR),X-ray diffraction(XRD)and X-ray photoelectron spectroscopy(XPS)characterizations.The morphology and structure of PPTCDA/GA are examined by scanning electron microscopy(SEM)and transmission electron microscopy(TEM).
基金the Link Project of the National Natural Science Foundation of China and Guangdong Province(Grant no.U1301244)the National Natural Science Foundation of China(Grant nos.51573215,21506260)+2 种基金Guangdong Province Science&Technology Foundation(2011B050300008)Guangdong Natural Science Foundation(Grant nos.2014A030313159,2016A030313354)Guangzhou Scientific and Technological Planning Project(2014J4500002,201607010042)for financial support of this work
文摘Lithium–sulfur batteries have great potential for high energy applications due to their high capacities,low cost and eco-friendliness. However, the particularly rapid capacity decay owing to the dissolution and diffusion of polysulfide intermediate into the electrolyte still hamper their practical applications.And the reported preparation procedures to sulfur based cathode materials are often complex, and hence are rather difficult to produce at large scale. Here, we report a simple mechano-chemical sulfurization methodology in vacuum environment applying ball-milling method combined both the chemical and physical interaction for the one-pot synthesis of edge-sulfurized grapheme nanoplatelets with 3D porous foam structure as cathode materials. The optimal sample of 70%S–Gn Ps-48 h(ball-milled 48 h) obtains 13.2 wt% sulfur that chemically bonded onto the edge of Gn Ps. And the assembled batteries exhibit high initial discharge capacities of 1089 mAh/g at 0.1 C and 950 mAh/g at 0.5 C, and retain a stable discharge capacity of 776 mAh/g after 250 cycles at 0.5 C with a high Coulombic efficiency of over 98%. The excellent performance is mainly attributed to the mechano-chemical interaction between sulfur and grapheme nanoplatelets. This definitely triggers the currently extensive research in lithium–sulfur battery area.
基金supported by the National Natural Science Foundation of China(21573116 , 51822205 , 21875121 and 51602218)Ministry of Science and Technology of China(2017YFA0206701)+1 种基金Ministry of Education of China(B12015)the Young Thousand Talents Program
文摘The rapid development of flexible electronic devices requires the design of flexible energy-storage devices. Lithium-sulfur(Li-S) batteries are attracting much interest due to their high energy density. Therefore, flexible Li-S batteries with high areal capacity are desired. Herein, we fabricated freestanding reduced graphene oxide-sulfur(RGO@S) composite films with a cross-linked structure using a blade coating technique, followed by a subsequent chemical reduction. The porous cross-linked structure endows the composite films with excellent electrochemical performance. The batteries based on RGO@S composite films could exhibit a high discharge capacity of 1381 m Ah/g at 0.1 C and excellent cycle stability. Furthermore, the freestanding composite film possesses excellent conductivity and high mechanical strength. Therefore, they can be used as the cathodes of flexible Li-S batteries. As a proof of concept, soft-packaged Li-S batteries were assembled and remained stable electrochemical performance under different bending states.