期刊文献+
共找到224,966篇文章
< 1 2 250 >
每页显示 20 50 100
Sulfur/carbon composites prepared with ordered porous carbon for Li-S battery cathode 被引量:3
1
作者 Xin Zhuang Yingjia Liu +2 位作者 Jian Chen Hao Chen Baolian Yi 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2014年第3期391-396,共6页
Ordered porous cabon with a 2-D hexagonal structure,high specific surface area and large pore volume was synthesized through a twostep heating method using tri-block copolymer as template and phenolic resin as carbon ... Ordered porous cabon with a 2-D hexagonal structure,high specific surface area and large pore volume was synthesized through a twostep heating method using tri-block copolymer as template and phenolic resin as carbon precursor.The results indicated the electrochemical performance of the sulfur/carbon composites prepared with the ordered porous carbon was significantly affected by the pore structure of the carbon.Both the specific capacity and cycling stability of the sulfur/carbon composites were improved using the bimodal micro/meso-porous carbon frameworks with high surface area.Its initial discharge capacity can be as high as 1200 mAh·g-1 at a current density of 167.5 mA·g-1The improved capacity retention was obtained during the cell cycling as well. 展开更多
关键词 lithium-sulfur battery sulfur/carbon composite ordered porous carbon bimodal micro/meso-porous carbon tri-block copolymer
下载PDF
Superfast and solvent-free core-shell assembly of sulfur/carbon active particles by hail-inspired nanostorm technology for high-energy-density Li-S batteries
2
作者 Lanxiang Feng Zhiwei Zhu +6 位作者 Yan He Yuan Ji Xuewe He Lei Jing Mingbo Yang Wei Yang Yu Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第2期565-573,共9页
The demand on low-carbon emission fabrication technologies for energy storage materials is increasing dramatically with the global interest on carbon neutrality.As a promising active material for metal-sulfur batterie... The demand on low-carbon emission fabrication technologies for energy storage materials is increasing dramatically with the global interest on carbon neutrality.As a promising active material for metal-sulfur batteries,sulfur is of great interest due to its high-energy-density and abundance.However,there is a lack of industry-friendly and low-carbon fabrication strategies for high-performance sulfur-based active particles,which,however,is in critical need by their practical success.Herein,based on a hail-inspired sulfur nano-storm(HSN)technology developed in our lab,we report an energy-saving,solvent-free strategy for producing core-shell sulfur/carbon electrode particles(CNT@AC-S)in minutes.The fabrication of the CNT@AC-S electrode particles only involves low-cost sulfur blocks,commercial carbon nanotubes(CNT)and activated carbon(AC)micro-particles with high specific surface area.Based on the above core-shell CNT@AC-S particles,sulfur cathode with a high sulfur-loading of 9.2 mg cm^(-2) delivers a stable area capacity of 6.6 mAh cm^(-2) over 100 cycles.Furthermore,even for sulfur cathode with a super-high sulfur content(72 wt%over the whole electrode),it still delivers a high area capacity of 9 mAh cm^(-2) over50 cycles in a quasi-lean electrolyte condition.In a nutshell,this study brings a green and industryfriendly fabrication strategy for cost-effective production of rationally designed S-rich electrode particles. 展开更多
关键词 Core-shell assembly sulfur/carbon secondary active particles High energy density lithium sulfur batteries Thick sulfur electrode Hail-inspired sulfur nanostorm technology
下载PDF
Biomass-derived porous carbon with single-atomic cobalt toward high-performance aqueous zinc-sulfur batteries at room temperature
3
作者 Shenfei Zhao Xiaoshuai Wu +5 位作者 Jiliang Zhang Chunjie Li Zixiang Cui Weihua Hu Ruguang Ma Changming Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第8期325-335,I0008,共12页
Aqueous zinc-sulfur batteries at room temperature hold great potential for next-generation energy storage technology due to their low cost,safety and high energy density.However,slow reaction kinetics and high activat... Aqueous zinc-sulfur batteries at room temperature hold great potential for next-generation energy storage technology due to their low cost,safety and high energy density.However,slow reaction kinetics and high activation energy at the sulfur cathode pose great challenges for the practical applications.Herein,biomass-derived carbon with single-atomic cobalt sites(MMPC-Co)is synthesized as the cathode in Zn-S batteries.The catalysis of single-atom Co sites greatly promotes the transform of cathode electrolyte interface(CEI)on the cathode surface,while offering accelerated charge transfer rate for high conversion reversibility and large electrochemical surface area(ECSA)for high electrocatalytic current.Furthermore,the rich pore structure not only physically limits sulfur loss,but also accelerates the transport of zinc ions.In addition,the large pore volume of MMPC-Co is able to relieve the stress effect caused by the volume expansion of Zn S during charge/discharge cycles,thereby maintaining the stability of electrode structure.Consequently,the sulfur cathode maintains a high specific capacity of 729.96 m A h g^(-1)after 500 cycles at4 A g^(-1),which is much better than most cathode materials reported in the literature.This work provides new insights into the design and development of room-temperature aqueous Zn-S batteries. 展开更多
关键词 Biomass-derived carbon Single-atom catalysts Rich pore structure sulfur cathode Aqueous zinc-sulfur batteries
下载PDF
Density functional theory study of B- and Si-doped carbons and their adsorption interactions with sulfur compounds
4
作者 Peng Guo Hong Zhang +1 位作者 Shuliang Dong Libao An 《Carbon Energy》 SCIE EI CAS CSCD 2024年第2期195-208,共14页
Understanding the adsorption interactions between carbon materials and sulfur compounds has far-reaching impacts,in addition to their well-known important role in energy storage and conversion,such as lithium-ion batt... Understanding the adsorption interactions between carbon materials and sulfur compounds has far-reaching impacts,in addition to their well-known important role in energy storage and conversion,such as lithium-ion batteries.In this paper,properties of intrinsic B or Si single-atom doped,and B-Si codoped graphene(GR)and graphdiyne(GDY)were investigated by using density functional theory-based calculations,in which the optimal doping configurations were explored for potential applications in adsorbing sulfur compounds.Results showed that both B or Si single-atom doping and B-Si codoping could substantially enhance the electron transport properties of GR and GDY,improving their surface activity.Notably,B and Si atoms displayed synergistic effects for the codoped configurations,where B-Si codoped GR/GDY exhibited much better performance in the adsorption of sulfurcontaining chemicals than single-atom doped systems.In addition,results demonstrated that,after B-Si codoping,the adsorption energy and charge transfer amounts of GDY with sulfur compounds were much larger than those of GR,indicating that B-Si codoped GDY might be a favorable material for more effectively interacting with sulfur reagents. 展开更多
关键词 ADSORPTION density functional theory DOPING graphdiyne GRAPHENE sulfur compounds
下载PDF
Sulfur doped iron-nitrogen-hard carbon nanosheets as efficient and robust noble metal-free catalysts for oxygen reduction reaction in PEMFC
5
作者 Bin Liu Jiawang Li +6 位作者 Bowen Yan Qi Wei Xingyu Wen Huarui Xie Huan He Pei Kang Shen Zhi Qun Tian 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第2期422-433,I0010,共13页
Transition metal-nitrogen-carbon(M-N-C)as a promising substitute for the conventional noble metalbased catalyst still suffers from low activity and durability for oxygen reduction reaction(ORR)in proton exchange membr... Transition metal-nitrogen-carbon(M-N-C)as a promising substitute for the conventional noble metalbased catalyst still suffers from low activity and durability for oxygen reduction reaction(ORR)in proton exchange membrane fuel cells(PEMFCs).To tackle the issue,herein,a new type of sulfur-doped ironnitrogen-hard carbon(S-Fe-N-HC)nanosheets with high activity and durability in acid media were developed by using a newly synthesized precursor of amide-based polymer with Fe ions based on copolymerizing two monomers of 2,5-thiophene dicarboxylic acid(TDA)as S source and 1,8-diaminonaphthalene(DAN)as N source via an amination reaction.The as-synthesized S-Fe-N-HC features highly dispersed atomic Fe Nxmoieties embedded into rich thiophene-S doped hard carbon nanosheets filled with highly twisted graphite-like microcrystals,which is distinguished from the majority of M-N-C with soft or graphitic carbon structures.These unique characteristics endow S-Fe-N-HC with high ORR activity and outstanding durability in 0.5 M H_(2)SO_(4).Its initial half-wave potential is 0.80 V and the corresponding loss is only 21 m V after 30,000 cycles.Meanwhile,its practical PEMFC performance is a maximum power output of 628.0 mW cm^(-2)and a slight power density loss is 83.0 m W cm^(-2)after 200-cycle practical operation.Additionally,theoretical calculation shows that the activity of Fe Nxmoieties on ORR can be further enhanced by sulfur doping at meta-site near FeN_(4)C.These results evidently demonstrate that the dual effect of hard carbon substrate and S doping derived from the precursor platform of amid-polymers can effectively enhance the activity and durability of Fe-N-C catalysts,providing a new guidance for developing advanced M-N-C catalysts for ORR. 展开更多
关键词 Transition metal-nitrogen-carbon Oxygen reduction reaction Hard carbon Amide based polymer reaction Proton exchange membrane cells
下载PDF
Integration of Desulfurization and Lithium-Sulfur Batteries Enabled by Amino-Functionalized Porous Carbon Nanofibers 被引量:2
6
作者 Minghui Sun Xuzhen Wang +2 位作者 Yong Li Zongbin Zhao Jieshan Qiu 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第2期334-343,共10页
Hydrogen sulfide(H_(2)S)is an industrial exhausted gas that is highly toxic to humans and the environment.Combining desulfurization and fabrication of cathode materials for lithium-sulfur batteries(LSBs)can solve this... Hydrogen sulfide(H_(2)S)is an industrial exhausted gas that is highly toxic to humans and the environment.Combining desulfurization and fabrication of cathode materials for lithium-sulfur batteries(LSBs)can solve this issue with a double benefit.Herein,the amino-functionalized lotus root-like carbon nanofibers(NH_(2)-PLCNFs)are prepared by the amination of electrospinning carbon nanofibers under dielectric barrier discharge plasma.Selective catalytic oxidation of H_(2)S to elemental sulfur(S)is achieved over the metalfree NH_(2)-PLCNFs catalyst,and the obtained composite S@NH_(2)-PLCNFs is further used as cathode in LSBs.NH_(2)-PLCNFs enable efficient desulfurization(removal capacity as high as 3.46 g H_(2)S g^(−1) catalyst)and strongly covalent stabilization of S on modified carbon nanofibers.LSBs equipped with S@NH_(2)-PLCNFs deliver a high specific capacity of 705.8 mA h g^(−1) at 1 C after 1000 cycles based on the spatial confinement and the covalent stabilization of electroactive materials on amino-functionalized porous carbon matrix.It is revealed that S@NH_(2)-PLCNFs obtained by this kind of chemical vapor deposition leads to a more homogeneous S distribution and superior electrochemical performance to the sample S/NH_(2)-PLCNF-M prepared by the traditional molten infusion.This work opens a new avenue for the combination of environment protection and energy storage. 展开更多
关键词 AMINO-FUNCTIONALIZATION DEsulfurIZATION lithium-sulfur batteries porous carbon nanofiber sulfur immobilization
下载PDF
Cellulose nanofiber-derived carbon aerogel for advanced room-temperature sodium–sulfur batteries 被引量:1
7
作者 Wu Yang Wang Yang +4 位作者 Ren Zou Yongfa Huang Haihong Lai Zehong Chen Xinwen Peng 《Carbon Energy》 SCIE CAS CSCD 2023年第1期1-15,共15页
Room-temperature sodium–sulfur(RT/Na–S)batteries are regarded as promising large-scale stationary energy storage systems owing to their high energy density and low cost as well as the earth-abundant reserves of sodi... Room-temperature sodium–sulfur(RT/Na–S)batteries are regarded as promising large-scale stationary energy storage systems owing to their high energy density and low cost as well as the earth-abundant reserves of sodium and sulfur.However,the diffusion of polysulfides and sluggish kinetics of conversion reactions are still major challenges for their application.Herein,we developed a powerful and functional separator to inhibit the shuttle effect by coating a lightweight three-dimensional cellulose nanofiber-derived carbon aerogel on a glass fiber separator(denoted NSCA@GF).The hierarchical porous structures,favorable electronic conductivity,and three-dimensional interconnected network of N,S-codoped carbon aerogel endow a multifunctional separator with strong polysulfide anchoring capability and fast reaction kinetics of polysulfide conversion,which can act as the barrier layer and an expanded current collector to increase sulfur utilization.Moreover,the hetero-doped N/S sites are believed to strengthen polysulfide anchoring capability via chemisorption and accelerate the redox kinetics of polysulfide conversion,which is confirmed from experimental and theoretical results.As a result,the assembled Na–S coin cells with the NSCA@GF separator showed a high reversible capacity(788.8 mAh g^(−1) at 0.1 C after 100 cycles)and superior cycling stability(only 0.059%capacity decay per cycle over 1000 cycles at 1 C),thereby demonstrating the significant potential for application in high-performance RT/Na–S batteries. 展开更多
关键词 carbon aerogel cellulose nanofiber N S codoping redox kinetics sodium–sulfur batteries
下载PDF
Ultralong nitrogen/sulfur Co-doped carbon nano-hollowsphere chains with encapsulated cobalt nanoparticles for highly efficient oxygen electrocatalysis 被引量:4
8
作者 Wei Zhang Xingmei Guo +6 位作者 Cong Li Jiang-Yan Xue Wan-Ying Xu Zheng Niu Hongwei Gu Carl Redshaw Jian-Ping Lang 《Carbon Energy》 SCIE CSCD 2023年第8期15-30,共16页
The development of simple and effective strategies to prepare electrocatalysts,which possess unique and stable structures comprised of metal/nonmetallic atoms for oxygen reduction reaction(ORR)and oxygen evolution rea... The development of simple and effective strategies to prepare electrocatalysts,which possess unique and stable structures comprised of metal/nonmetallic atoms for oxygen reduction reaction(ORR)and oxygen evolution reaction(OER),is currently an urgent issue.Herein,an efficient bifunctional electrocatalyst featured by ultralong N,S-doped carbon nano-hollow-sphere chains about 1300 nm with encapsulated Co nanoparticles(Co-CNHSCs)is developed.The multifunctional catalytic properties of Co together with the heteroatom-induced charge redistribution(i.e.,modulating the electronic structure of the active site)result in superior catalytic activities toward OER and ORR in alkaline media.The optimized catalyst Co-CNHSC-3 displays an outstanding electrocatalytic ability for ORR and OER,a high specific capacity of 1023.6 mAh gZn^(-1),and excellent reversibility after 80 h at 10mA cm^(-2)in a Zn-air battery system.This work presents a new strategy for the design and synthesis of efficient multifunctional carbon-based catalysts for energy storage and conversion devices. 展开更多
关键词 Co nanoparticles N S co-doping oxygen electrocatalysts rechargeable Zn-air batteries ultralong carbon nano-hollow-sphere chains
下载PDF
Waste to wealth: Oxygen-nitrogen-sulfur codoped lignin-derived carbon microspheres from hazardous black liquors for high-performance DSSCs 被引量:1
9
作者 Wenjie Cheng Caichao Wan +6 位作者 Xingong Li Huayun Chai Zhenxu Yang Song Wei Jiahui Su Xueer Tang Yiqiang Wu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第8期549-563,I0013,共16页
Carbon materials are effective substitutes for Pt counter electrodes(CEs) in dye-sensitized solar cells(DSSCs). However, many of these materials, such as carbon nanotubes and graphene, are expensive and require comple... Carbon materials are effective substitutes for Pt counter electrodes(CEs) in dye-sensitized solar cells(DSSCs). However, many of these materials, such as carbon nanotubes and graphene, are expensive and require complex preparation process. Herein, waste lignin, recycled from hazardous black liquors,is used to create oxygen-nitrogen-sulfur codoped carbon microspheres for use in DSSC CEs through the facile process of low-temperature preoxidation and high-temperature self-activation. The large number of ester bonds formed by preoxidation increase the degree of cross-linking of the lignin chains, leading to the formation of highly disordered carbon with ample defect sites during pyrolysis. The presence of organic O/N/S components in the waste lignin results in high O/N/S doping of the pyrolysed carbon,which increases the electrolyte ion adsorption and accelerates the electron transfer at the CE/electrolyte interface, as confirmed by density functional theory(DFT) calculations. The presence of inorganic impurities enables the construction of a hierarchical micropore-rich carbon structure through the etching effect during self-activation, which can provide abundant catalytically active sites for the reversible adsorption/desorption of electrolyte ions. Under these synergistic effects, the DSSCs that use this novel carbon CE achieve a quite high power-conversion efficiency of 9.22%. To the best of our knowledge, the value is a new record reported so far for biomass-carbon-based DSSCs. 展开更多
关键词 LIGNIN carbon microspheres CODOPING Hierarchical pores DSSCS
下载PDF
Sulfur/nitrogen/oxygen tri-doped carbon nanospheres as an anode for potassium ion storage 被引量:2
10
作者 Xiaoyan Chen Wang Zhou +2 位作者 Jilei Liu Yingpeng Wu Zhigang Liu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第2期338-347,I0009,共11页
Carbonaceous materials are considered as ideal anode for potassium ion batteries(PIBs)due to their abundant resources and stable physical and chemical properties.However,improvements of reversible capacity and cycle p... Carbonaceous materials are considered as ideal anode for potassium ion batteries(PIBs)due to their abundant resources and stable physical and chemical properties.However,improvements of reversible capacity and cycle performance are still needed,aiming to the practical application.Herein,S/N/O tridoped carbon(SNOC)nanospheres are prepared by in-situ vulcanized polybenzoxazine.The S/N/O tridoped carbon matrix provides abundant active sites for potassium ion adsorption and effectively improves potassium storage capacity.Moreover,the SNOC nanospheres possess large carbon interlayer spacing and high specific surface area,which broaden the diffusion pathway of potassium ions and accelerate the electron transfer speed,resulting in excellent rate performance.As an anode for PIBs,SNOC shows attractive rate performance(438.5 mA h g^(-1) at 50 mA g^(-1) and 174.5 mA h g^(-1) at2000 mA g^(-1)),ultra-high reversible capacity(397.4 mA h g^(-1) at 100 mA g^(-1) after 700 cycles)and ultra-long cycling life(218.9 mA h g^(-1) at 2000 mA g^(-1) after 7300 cycles,123.1 mA h g^(-1) at3000 mA g^(-1) after 16500 cycles and full cell runs for 4000 cycles).Density functional theory calculation confirms that S/N/O tri-doping enhances the adsorption and diffusion of potassium ions,and in-situ Fourier-transform infrared explores explored the potassium storage mechanism of SNOC. 展开更多
关键词 Potassium ion batteries S/N/O tri-doped carbon nanospheres ANODE
下载PDF
Towards Practical Application of Li-S Battery with High Sulfur Loading and Lean Electrolyte:Will Carbon-Based Hosts Win This Race? 被引量:1
11
作者 Yi Gong Jing Li +7 位作者 Kai Yang Shaoyin Li Ming Xu Guangpeng Zhang Yan Shi Qiong Cai Huanxin Li Yunlong Zhao 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第9期384-422,共39页
As the need for high-energy–density batteries continues to grow, lithium-sulfur(Li–S) batteries have become a highly promising next-generation energy solution due to their low cost and exceptional energy density com... As the need for high-energy–density batteries continues to grow, lithium-sulfur(Li–S) batteries have become a highly promising next-generation energy solution due to their low cost and exceptional energy density compared to commercially available Li-ion batteries. Research into carbon-based sulfur hosts for Li–S batteries has been ongoing for over two decades, leading to a significant number of publications and patents.However, the commercialization of Li–S batteries has yet to be realized. This can be attributed, in part, to the instability of the Li metal anode. However, even when considering just the cathode side, there is still no consensus on whether carbon-based hosts will prove to be the best sulfur hosts for the industrialization of Li–S batteries. Recently, there has been controversy surrounding the use of carbon-based materials as the ideal sulfur hosts for practical applications of Li–S batteries under high sulfur loading and lean electrolyte conditions. To address this question, it is important to review the results of research into carbon-based hosts, assess their strengths and weaknesses, and provide a clear perspective. This review systematically evaluates the merits and mechanisms of various strategies for developing carbon-based host materials for high sulfur loading and lean electrolyte conditions. The review covers structural design and functional optimization strategies in detail, providing a comprehensive understanding of the development of sulfur hosts. The review also describes the use of efficient machine learning methods for investigating Li–S batteries. Finally, the outlook section lists and discusses current trends, challenges, and uncertainties surrounding carbon-based hosts, and concludes by presenting our standpoint and perspective on the subject. 展开更多
关键词 Li-S batteries carbon materials Structural design Functional modification Machine learning
下载PDF
Carbon,Nitrogen,and Sulfur Contents in Marine Phytoplankton Cells and Biomass Conversion
12
作者 CHEN Wenqing YANG Shimin +1 位作者 SHANG Jie WANG Jinwen 《Journal of Ocean University of China》 SCIE CAS CSCD 2023年第3期851-862,共12页
In this study,we isolated and cultured phytoplankton along the coast of China and measured the cellular carbon,nitrogen,and sulfur contents under four temperatures.The results showed that the contents of the cellular ... In this study,we isolated and cultured phytoplankton along the coast of China and measured the cellular carbon,nitrogen,and sulfur contents under four temperatures.The results showed that the contents of the cellular elements varied widely among different phytoplankton.We found that temperature is one of the important factors affecting the carbon,nitrogen,and sulfur contents in phytoplankton cells;however,the degree of influence of temperature is different for different kinds of phytoplankton.By measuring the nitrogen content in cells,we found that the C:N ratio indirectly measured in the experiment fluctuated in the range of 3.50-8.97,and the average C:N ratio was 5.52.In this experiment,we accurately measured the cell elemental contents at different temperatures and transformed the cell count results into carbon,nitrogen,and sulfur contents to express the biomass.This method ensures that the contribution of species that are small in number but with a large cell volume in biomass is considered.Moreover,this method comprehensively considers the interspecific differences of species and the uneven distribution of elements in phytoplankton cells,which is of significance in the estimation of marine carbon and nitrogen budget.The distribution of nitrogen content in marine phytoplankton can well indicate the marine eutrophication caused by human activities.Climate change can affect the community structure and element composition of marine phytoplankton,meanwhile marine carbon and nitrogen element can regulate the climate to a certain extent. 展开更多
关键词 PHYTOPLANKTON temperature gradient carbon element nitrogen element sulfur element element content distribution
下载PDF
Single‐atomic Co‐B_(2)N_(2)sites anchored on carbon nanotube arrays promote lithium polysulfide conversion in lithium-sulfur batteries 被引量:1
13
作者 Zhifeng Wang Yajing Yan +8 位作者 Yongguang Zhang Yanxu Chen Xianyun Peng Xin Wang Weimin Zhao Chunling Qin Qian Liu Xijun Liu Zhongwei Chen 《Carbon Energy》 SCIE EI CAS CSCD 2023年第11期31-43,共13页
Due to low cost,high capacity,and high energy density,lithium–sulfur(Li–S)batteries have attracted much attention;however,their cycling performance was largely limited by the poor redox kinetics and low sulfur utili... Due to low cost,high capacity,and high energy density,lithium–sulfur(Li–S)batteries have attracted much attention;however,their cycling performance was largely limited by the poor redox kinetics and low sulfur utilization.Herein,predicted by density functional theory calculations,single‐atomic Co‐B2N2 site‐imbedded boron and nitrogen co‐doped carbon nanotubes(SA‐Co/BNC)were designed to accomplish high sulfur loading,fast kinetic,and long service period Li–S batteries.Experiments proved that Co‐B2N2 atomic sites can effectively catalyze lithium polysulfide conversion.Therefore,the electrodes delivered a specific capacity of 1106 mAh g−1 at 0.2 C after 100 cycles and exhibited an outstanding cycle performance over 1000 cycles at 1 C with a decay rate of 0.032%per cycle.Our study offers a new strategy to couple the combined effect of nanocarriers and single‐atomic catalysts in novel coordination environments for high‐performance Li–S batteries. 展开更多
关键词 carbon nanotubes coordination environment engineering density functional theory calculation lithium-sulfur batteries single‐atom catalys
下载PDF
Carbon Emission Effects Driven by Evolution of Chinese Dietary Structure from 1987 to 2020 被引量:1
14
作者 ZHU Yuanyuan ZHANG Yan ZHU Xiaohua 《Chinese Geographical Science》 SCIE CSCD 2024年第1期181-194,共14页
Exploring carbon emission effects based on the evolution of residents’ dietary structure to achieve the carbon neutrality goal and mitigate climate change is an important task.This study took China as the research ob... Exploring carbon emission effects based on the evolution of residents’ dietary structure to achieve the carbon neutrality goal and mitigate climate change is an important task.This study took China as the research object(data excluding Hong Kong,Macao and Taiwan) and used the carbon emission coefficient method to quantitatively measure the food carbon emissions from 1987–2020,then analyzed the carbon emission effects under the evolution of dietary structure.The results showed that during the study period,the Chinese dietary structure gradually changed to a high-carbon consumption pattern.The dietary structure of urban residents developed to a balanced one,while that of rural residents developed to a high-quality one.During the study period,the per capita food carbon emissions and total food consumption of Chinese showed an increasing trend.The per capita food carbon emissions of residents in urban and rural showed an overall upward trend.The total food carbon emissions in urban increased significantly,while that in rural increased first and then decreased.The influence of beef and mutton on carbon emissions is the highest in dietary structure.Compared with the balanced dietary pattern,the food carbon emissions of Chinese residents had not yet reached the peak,but were evolving to a high-carbon consumption pattern. 展开更多
关键词 dietary structure structural evolution carbon emission effects carbon neutrality China
下载PDF
Construction and Application of a Regional Kilometer-Scale Carbon Source and Sink Assimilation Inversion System(CCMVS-R) 被引量:1
15
作者 Lifeng Guo Xiaoye Zhang +8 位作者 Junting Zhong Deying Wang Changhong Miao Licheng Zhao Zijiang Zhou Jie Liao Bo Hu Lingyun Zhu Yan Chen 《Engineering》 SCIE EI CAS CSCD 2024年第2期263-275,共13页
CO_(2)is one of the most important greenhouse gases(GHGs)in the earth’s atmosphere.Since the industrial era,anthropogenic activities have emitted excessive quantities of GHGs into the atmosphere,resulting in climate ... CO_(2)is one of the most important greenhouse gases(GHGs)in the earth’s atmosphere.Since the industrial era,anthropogenic activities have emitted excessive quantities of GHGs into the atmosphere,resulting in climate warming since the 1950s and leading to an increased frequency of extreme weather and climate events.In 2020,China committed to striving for carbon neutrality by 2060.This commitment and China’s consequent actions will result in significant changes in global and regional anthropogenic carbon emissions and therefore require timely,comprehensive,and objective monitoring and verification support(MVS)systems.The MVS approach relies on the top-down assimilation and inversion of atmospheric CO_(2)concentrations,as recommended by the Intergovernmental Panel on Climate Change(IPCC)Inventory Guidelines in 2019.However,the regional high-resolution assimilation and inversion method is still in its initial stage of development.Here,we have constructed an inverse system for carbon sources and sinks at the kilometer level by coupling proper orthogonal decomposition(POD)with four-dimensional variational(4DVar)data assimilation based on the weather research and forecasting-greenhouse gas(WRF-GHG)model.Our China Carbon Monito ring and Verification Support at the Regional level(CCMVS-R)system can continuously assimilate information on atmospheric CO_(2)and other related information and realize the inversion of regional and local anthropogenic carbon emissions and natural terrestrial ecosystem carbon exchange.Atmospheric CO_(2)data were collected from six ground-based monito ring sites in Shanxi Province,China to verify the inversion effect of regio nal anthropogenic carbon emissions by setting ideal and real experiments using a two-layer nesting method(at 27 and 9 km).The uncertainty of the simulated atmospheric CO_(2)decreased significantly,with a root-mean-square error of CO_(2)concentration values between the ideal value and the simulated after assimilation was close to 0.The total anthropogenic carbon emissions in Shanxi Province in 2019 from the assimilated inversions were approximately 28.6%(17%-38%)higher than the mean of five emission inventories using the bottomup method,showing that the top-down CCMVS-R system can obtain more comprehensive information on anthropogenic carbon emissions. 展开更多
关键词 CCMVS-R Regional carbon assimilation system Anthropogenic carbon emissions CO_(2) POD 4DVar
下载PDF
Regulation of the selective hydrogenation performance of sulfur-doped carbon-supported palladium on chloronitrobenzene
16
作者 Qunfeng Zhang Bingcheng Li +6 位作者 Yuan Zhou Deshuo Zhang Chunshan Lu Feng Feng Jinghui Lv Qingtao Wang Xiaonian Li 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第6期69-75,共7页
The overall performance of metal catalysts can be efficiently adjusted by modifying carbon carriers with different valence sulfur precursors.The wet impregnation technique successfully prepared carbon material carrier... The overall performance of metal catalysts can be efficiently adjusted by modifying carbon carriers with different valence sulfur precursors.The wet impregnation technique successfully prepared carbon material carriers doped with varying sources of sulfur(Na_(2)SO_(4),NaHSO_(3),Na_(2)S·9H_(2)O).Palladium carbon catalysts doped with different sulfur precursors had been prepared with the aid of the liquid-phase reduction method of the selective hydrogenation of o-chloronitrobenzene(o-CNB)to o-chloroaniline(o-CAN).The catalyst prepared for Na_(2)S·9H_(2)O as a precursor has excellent performance,and the selectivity for o-CAN is more than 99.9%at 100%conversion.In addition,the characterization results show that with the decrease of S valence,the electronic effect between S and Pd increases,and the outer electron shift of Pd increases,which reduces the adsorption and dissociation ability of Pd to hydrogen,resulting in excellent selectivity.The effects provided a good idea for the hydrogenation of o-CNB and a different point of view on sulfur doping in a variety of hydrogenation reactions. 展开更多
关键词 CATALYST HYDROGENATION SELECTIVITY sulfur doping Electronic effect
下载PDF
Sulfur-doped hard carbon hybrid anodes with dual lithium-ion/metal storage bifunctionality for high-energy-density lithium-ion batteries
17
作者 Sungmin Cho Jong Chan Hyun +5 位作者 Son Ha Yeonhua Choi Honggyu Seong Jaewon Choi Hyoung-Joon Jin Young Soo Yun 《Carbon Energy》 SCIE CAS CSCD 2023年第1期71-81,共11页
Bifunctional hybrid anodes(BHAs),which are both a high-performance active host material for lithium-ion storage as well as a guiding agent for homogeneous lithium metal nucleation and growth,exhibit significant potent... Bifunctional hybrid anodes(BHAs),which are both a high-performance active host material for lithium-ion storage as well as a guiding agent for homogeneous lithium metal nucleation and growth,exhibit significant potential as anodes for next-generation high-energy-density lithium-ion batteries(LIBs).In this study,sulfur-doped hard carbon nanosphere assemblies(S-HCNAs)were prepared through a hydrothermal treatment of a liquid organic precursor,followed by high-temperature thermal annealing with elemental sulfur for application as BHAs for LIBs.In a carbonate-based electrolyte containing fluoroethylene carbonate additive,the S-HCNAs showed high lithium-ion storage capacities in sloping as well as plateau voltage sections,good rate capabilities,and stable cyclabilities.In addition,high average Coulombic efficiencies(CEs)of~96.9%were achieved for dual lithium-ion and lithium metal storage cycles.In the LIB full-cell tests with typical NCM811 cathodes,the S-HCNA-based BHAs containing~400 mA h g^(−1) of excess lithium led to high energy and power densities of~500Wh kg^(−1) and~1695Wkg^(−1),respectively,and a stable cycling performance with~100%CEs was achieved. 展开更多
关键词 hard carbon hybrid anode lithium-ion batteries lithium metal anode lithium metal batteries sulfur-doped carbon
下载PDF
Synergistic effects of carbon cycle metabolism and photosynthesis in Chinese cabbage under salt stress 被引量:1
18
作者 Hao Liang Qiling Shi +8 位作者 Xing Li Peipei Gao Daling Feng Xiaomeng Zhang Yin Lu Jingsen Yan Shuxing Shen Jianjun Zhao Wei Ma 《Horticultural Plant Journal》 SCIE CAS CSCD 2024年第2期461-472,共12页
Chinese cabbage(Brassica rapa ssp. pekinensis) has a long cultivation history and is one of the vegetable crops with the largest cultivation area in China. However, salt stress severely damages photosynthesis and horm... Chinese cabbage(Brassica rapa ssp. pekinensis) has a long cultivation history and is one of the vegetable crops with the largest cultivation area in China. However, salt stress severely damages photosynthesis and hormone metabolism, nutritional balances, and results in ion toxicity in plants. To better understand the mechanisms of salt-induced growth inhibition in Chinese cabbage, RNA-seq and physiological index determination were conducted to explore the impacts of salt stress on carbon cycle metabolism and photosynthesis in Chinese cabbage. Here, we found that the number of thylakoids and grana lamellae and the content of starch granules and chlorophyll in the leaves of Chinese cabbage under salt stress showed a time-dependent response, first increasing and then decreasing. Chinese cabbage increased the transcript levels of genes related to the photosynthetic apparatus and carbon metabolism under salt stress, probably in an attempt to alleviate damage to the photosynthetic system and enhance CO_(2) fixation and energy metabolism. The transcription of genes related to starch and sucrose synthesis and degradation were also enhanced;this might have been an attempt to maintain intracellular osmotic pressure by increasing soluble sugar concentrations. Soluble sugars could also be used as potential reactive oxygen species(ROS) scavengers, in concert with peroxidase(POD)enzymes, to eliminate ROS that accumulate during metabolic processes. Our study characterizes the synergistic response network of carbon metabolism and photosynthesis under salt stress. 展开更多
关键词 Chinese cabbage Salt stress carbon metabolism PHOTOSYNTHESIS CHLOROPLAST
下载PDF
Oxygen functionalization-assisted anionic exchange toward unique construction of flower-like transition metal chalcogenide embedded carbon fabric for ultra-long life flexible energy storage and conversion 被引量:1
19
作者 Roshan M.Bhattarai Kisan Chhetri +5 位作者 Nghia Le Debendra Acharya Shirjana Saud Mai Cao Hoang Phuong Lan Nguyen Sang Jae Kim Young Sun Mok 《Carbon Energy》 SCIE EI CAS CSCD 2024年第1期72-93,共22页
The metal-organic framework(MOF)derived Ni–Co–C–N composite alloys(NiCCZ)were“embedded”inside the carbon cloth(CC)strands as opposed to the popular idea of growing them upward to realize ultrastable energy storag... The metal-organic framework(MOF)derived Ni–Co–C–N composite alloys(NiCCZ)were“embedded”inside the carbon cloth(CC)strands as opposed to the popular idea of growing them upward to realize ultrastable energy storage and conversion application.The NiCCZ was then oxygen functionalized,facilitating the next step of stoichiometric sulfur anion diffusion during hydrothermal sulfurization,generating a flower-like metal hydroxysulfide structure(NiCCZOS)with strong partial implantation inside CC.Thus obtained NiCCZOS shows an excellent capacity when tested as a supercapacitor electrode in a three-electrode configuration.Moreover,when paired with the biomass-derived nitrogen-rich activated carbon,the asymmetric supercapacitor device shows almost 100%capacity retention even after 45,000 charge–discharge cycles with remarkable energy density(59.4 Wh kg^(-1)/263.8μWh cm^(–2))owing to a uniquely designed cathode.Furthermore,the same electrode performed as an excellent bifunctional water-splitting electrocatalyst with an overpotential of 271 mV for oxygen evolution reaction(OER)and 168.4 mV for hydrogen evolution reaction(HER)at 10 mA cm−2 current density along with 30 h of unhinged chronopotentiometric stability performance for both HER and OER.Hence,a unique metal chalcogenide composite electrode/substrate configuration has been proposed as a highly stable electrode material for flexible energy storage and conversion applications. 展开更多
关键词 carbon cloth energy conversion energy storage FLEXIBLE metal embedding ultra-stable
下载PDF
Effect of drying-wetting cycles on pore characteristics and mechanical properties of enzyme-induced carbonate precipitation-reinforced sea sand 被引量:2
20
作者 Ming Huang Kai Xu +2 位作者 Zijian Liu Chaoshui Xu Mingjuan Cui 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第1期291-302,共12页
Enzyme-induced carbonate precipitation(EICP)is an emanating,eco-friendly and potentially sound technique that has presented promise in various geotechnical applications.However,the durability and microscopic character... Enzyme-induced carbonate precipitation(EICP)is an emanating,eco-friendly and potentially sound technique that has presented promise in various geotechnical applications.However,the durability and microscopic characteristics of EICP-treated specimens against the impact of drying-wetting(D-W)cycles is under-explored yet.This study investigates the evolution of mechanical behavior and pore charac-teristics of EICP-treated sea sand subjected to D-W cycles.The uniaxial compressive strength(UCS)tests,synchrotron radiation micro-computed tomography(micro-CT),and three-dimensional(3D)recon-struction of CT images were performed to study the multiscale evolution characteristics of EICP-reinforced sea sand under the effect of D-W cycles.The potential correlations between microstructure characteristics and macro-mechanical property deterioration were investigated using gray relational analysis(GRA).Results showed that the UCS of EICP-treated specimens decreases by 63.7% after 15 D-W cycles.The proportion of mesopores gradually decreases whereas the proportion of macropores in-creases due to the exfoliated calcium carbonate with increasing number of D-W cycles.The micro-structure in EICP-reinforced sea sand was gradually disintegrated,resulting in increasing pore size and development of pore shape from ellipsoidal to columnar and branched.The gray relational degree suggested that the weight loss rate and UCS deterioration were attributed to the development of branched pores with a size of 100-1000 m m under the action of D-W cycles.Overall,the results in this study provide a useful guidancee for the long-term stability and evolution characteristics of EICP-reinforced sea sand under D-W weathering conditions. 展开更多
关键词 Enzyme-induced carbonate precipitation(EICP) Plant-based urease Drying-wetting(D-W)cycles Microstructure
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部