Soil nitrogen(N)is the main limiting nutrient for plant growth,which is sensitive to variations in the soil oxygen environment.To provide insights into plant N accumulation and yield under aerated and drip irrigation,...Soil nitrogen(N)is the main limiting nutrient for plant growth,which is sensitive to variations in the soil oxygen environment.To provide insights into plant N accumulation and yield under aerated and drip irrigation,a greenhouse tomato experiment was conducted with six treatments,including three fertilization types:inorganic fertilizer(NPK);organic fertilizer(OM);chemical(75%of applied N)+organic fertilizer(25%)(NPK+OM)under drip irrigation(DI)and aerated irrigation(AI)methods.Under Al,total soil carbon mineralization(C_(min))was significantly higher(by 5.7-7.0%)than under DI irrigation.C_(min)in the fertilizer treatments followed the order NPK+OM>OM>NPK under both AI and DI.Potentially mineralizable C(C_(0))and N(N_(0))was greater under AI than under DI.Gross N mineralization,gross nitrification,and NH_(4)^(+)immobilization rates were significantly higher under the AINPK treatment than the DINPK treatment by 2.58-3.27-,1.25-1.44-,and 1-1.26-fold,respectively.These findings demonstrated that AI and the addition of organic fertilizer accelerated the turnover of soil organic matter and N transformation processes,thereby enhancing N availability.Moreover,the combination of AI and organic fertilizer application was found to promote root growth(8.4-10.6%),increase the duration of the period of rapid N accumulation(ΔT),and increase the maximum N accumulation rate(V_(max)),subsequently encouraging aboveground dry matter accumulation.Consequently,the AI treatment yield was significantly greater(by 6.3-12.4%)than under the DI treatment.Further,N partial factor productivity(NPFP)and N harvest index(NHI)were greater under AI than under DI,by 6.3 to 12.4%,and 4.6 to 8.1%,respectively.The rankings of yield and NPFP remained consistent,with NPK+OM>OM>NPK under both AI and DI treatments.These results highlighted the positive impacts of AI and organic fertilizer application on soil N availability,N uptake,and overall crop yield in tomato.The optimal management measure was identified as the AINPK+OM treatment,which led to more efficient N management,better crop growth,higher yield,and more sustainable agricultural practices.展开更多
The rapid invasion of the plant Spartina alterniflora in coastal wetland areas can threaten the capacity of their soils to store carbon(C),nitrogen(N),and sulfur(S).In this study,we investigated the spatial and tempor...The rapid invasion of the plant Spartina alterniflora in coastal wetland areas can threaten the capacity of their soils to store carbon(C),nitrogen(N),and sulfur(S).In this study,we investigated the spatial and temporal distribution patterns of C,N and S of both soil and(native and invasive)plants in four typical coastal wetlands in the core area of the Yancheng National Nature Reserve,China.The results show that the invasive S.alterniflora greatly influenced soil properties and increased soil C,N and S storage capacity:the stock(mean±standard error)of soil organic carbon(SOC,(3.56±0.36)kg/m^3),total nitrogen(TN,(0.43±0.02)kg/m^3),and total sulfur(TS,(0.69±0.11)kg/m^3)in the S.alterniflora marsh exceeded those in the adjacent bare mudflat,Suaeda salsa marsh,and Phragmites australis marsh.Because of its greater biomass,plant C((1193.7±133.6)g/m^2),N((18.8±2.4)g/m^2),and S((9.4±1.5)g/m^2)storage of S.alterniflora was also larger than those of co-occurring native plants.More biogenic elements circulated in the soil-plant system of the S.alterniflora marsh,and their spatial and temporal distribution patterns were also changed by the S.alterniflora invasion.Soil properties changed by S.alterniflora’s invasion thereby indirectly affected the accumulation of soil C,N and S in this wetland ecosystem.The SOC,TN,and TS contents were positively correlated with soil electrical conductivity and moisture,but negatively correlated with the pH and bulk density of soil.Together,these results indicate that S.alterniflora invasion altered ecosystem processes,resulted in changes in net primary production and litter decomposition,and increased the soil C,N and S storage capacity in the invaded ecosystems in comparison to those with native tallgrass communities in the coastal wetlands of East China.展开更多
Glucosinolates (GSs) are a group of plant secondary metabolites containing abundant nitrogen (N) and sulfur (S) mainly in Brassica and have the beneficial effects on human health including anti-carcinogenic, cho...Glucosinolates (GSs) are a group of plant secondary metabolites containing abundant nitrogen (N) and sulfur (S) mainly in Brassica and have the beneficial effects on human health including anti-carcinogenic, cholesterol-reducing and other pharmacological effects. The objective of this study was to investigate the effect of different concentrations of N (5, 10, and 20 mmol L-a, denoted by N5, N10 and N20) and S (0,5, 1, and 2 mmol L^-1, denoted by S0.5, S1 and S2) on the yield and GSs in pakchoi (Brassica campestris L. ssp. chinensis var. communis) in hydroponics. Results showed that N10 and N20 significantly enhanced the yield compared with N5, however, N20 had a negative effect relative to N10. Only with N10 and N20 low S supply (S0.5) reduced the yield. The concentrations of aliphatic GSs, aromatic GS and total GSs were enhanced by N5 and indolyl GSs were enhanced by N20. S2 enhanced the concentration of individual GS and total GSs. The concentrations of indolyl GSs were maximized in N20S2 treatment, whereas the highest concentrations of aliphatic GSs, aromatic GS and total GSs were found in N5S2 treatment. Effects of N and S on aliphatic GSs were higher than on indolyl GSs. The results suggest that the accumulation of aliphatic GSs and aromatic GS could be enhanced by low N and high S and restricted by high N while that of indolyl GSs could be enhanced by high N and high S.展开更多
Renewable lignin used for synthesizing materials has been proven to be highly potential in specific electrochemistry.Here,we report a simple method to synthesize nitrogen and sulfur co-doped carbon nanosheets by using...Renewable lignin used for synthesizing materials has been proven to be highly potential in specific electrochemistry.Here,we report a simple method to synthesize nitrogen and sulfur co-doped carbon nanosheets by using bagasse lignin,denoted as lignin-derived carbon(LC).By adjusting the ratio of nitrogen source and annealing temperature,we obtained the ultrathin graphitic lignin carbon(LC-4-1000)with abundant wrinkles with high surface area of 1208 m2g_1 and large pore volume of 1.40 cm3g_1.In alkaline medium,LC-4-1000 has more positive half-wave potential and nearly current density compared to commercial Pt/C for oxygen reduction reaction(ORR).More importantly,LC-4-1000 also exhibits comparable activity and superior stability for ORR in acid medium due to its high graphitic N ratio and a direct four electron pathway for ORR.This study develops a cost-effective and highly efficient method to prepare biocarbon catalyst for ORR in fuel cells.展开更多
Field experiments were conducted at Cereal Crops Research Institute, Pirsabak, Nowshera, Pakistan, during winter 2003~2004; 2004~2005 to evaluate the effect of nitrogen; sulfur levels; methods of nitrogen applicatio...Field experiments were conducted at Cereal Crops Research Institute, Pirsabak, Nowshera, Pakistan, during winter 2003~2004; 2004~2005 to evaluate the effect of nitrogen; sulfur levels; methods of nitrogen application on canola (Brassica napus L. cv. Bulbul-98) under rainfed conditions. Four levels of S (0, 10, 20,; 30 kg/ha); three levels of N (40, 60,; 80 kg/ha); a control treatment with both nutrients at zero level were included in the experiments. Sulfur levels were applied at sowing while N levels were applied by three methods (100% soil application, 90% soil+10% foliar application,; 80% soil +20% foliar application). The experiments were laid out in randomized complete block (RCB) design having four replications. Oil content increased significantly up to 20 kg S/ha but further increase in S level did not enhance oil content. Glucosinolate content increased from 13.6 to 24.6 μmol/g as S rate was increased from 0 to 30 kg/ha. Protein content increased from 22.4% to 23.2% as S rate was increased from 0 to 20 kg/ha. Oil content responded negatively to the increasing N levels. The highest N level resulted in the highest values for protein (23.5%); glucosinolate (19.9 μmol/g) contents. Methods of N application had no significant impact on any parameters under study.展开更多
Lithium-sulfur(Li-S) battery is a potential energy storage technology with high energy density and low cost. However, the gap between theoretical expectation and practical performance limits its wide implementation. H...Lithium-sulfur(Li-S) battery is a potential energy storage technology with high energy density and low cost. However, the gap between theoretical expectation and practical performance limits its wide implementation. Herein, we report a nitrogen-doped porous carbon derived from biomass pomelo peel as sulfur host material for Li-S batteries. The hierarchical porous architecture and the polar surface introduced by N-doping render a favorable combination of physical and chemical sulfur confinements as well as an expedite electron/ion transfer, thus contributing to a facilitated and stabilized sulfur electrochemistry. As a result, the corresponding sulfur composite electrodes exhibit an ultrahigh initial capacity of 1534.6 mAh g^-1, high coulombic efficiency over 98% upon 300 cycles, and decent rate capability up to 2 C. This work provides an economical and effective strategy for the fabrication of advanced carbonaceous sulfur host material as well as the significant improvement of Li-S battery performance.展开更多
Porous nitrogen-doped carbon is an especially promising material energy storage due to its excellentconductivity, stable physicochemical properties, easy processability, controllable porosity and low price.Herein, we ...Porous nitrogen-doped carbon is an especially promising material energy storage due to its excellentconductivity, stable physicochemical properties, easy processability, controllable porosity and low price.Herein, we reported a novel well-designed hierarchically porous nitrogen-doped carbon (HPNC) via acombination of salt template (ZnC12) and hard template (SiO2) as sulfur host for lithium-sulfur batter-ies. The low-melting ZnC12 is boiled off and leaves behind micropores and small size mesopores duringpyrolysis process, while the silica spheres are removed by acid leaching to generate interconnected 3Dnetwork of macropores. The HPNC-S electrode exhibits an initial specific capacity of 1355 mAh g^-l at 0.IC (IC= 1675 mAh g^-1 ), a high-rate capability of 623 mAh g-l at 2 C, and a small decay of 0.13% per cycleover 300 cycles at 0.2 C. This excellent rate capability and remarkable long-term cyclability of the HPNC-Selectrode are attributed to its hierarchical porous structures for confining the soluble lithium polysulfideas well as the nitrogen doping for high absorbability of lithium polysulfide.展开更多
Much attention has been paid to the stoichiometry of carbon(C), nitrogen(N), and phosphorus(P) because of their significance for plant growth and climate change. However, other nutrients, such as sulfur(S), are often ...Much attention has been paid to the stoichiometry of carbon(C), nitrogen(N), and phosphorus(P) because of their significance for plant growth and climate change. However, other nutrients, such as sulfur(S), are often ignored. In this study, we analyzed the stoichiometry of N, P, and S in leaves of 348 plant species in China's forests. The results show higher N content and higher molar ratios of N/P and P/S in Angiospermae than in Gymnospermae. At the family level, Ulmaceae absorbed more N and P from soils than other families, and Cupressaceae absorbed more S than other families. In addition,except for bamboo and other tropical forests, leaf N and P content of China's forests generally increased from low to middle latitudes and then slightly decreased or plateaued at high latitudes. Plant ecotypes, taxonomic groups, environmental conditions, atmospheric S precipitation, and soil-available N and P significantly affected the distribution and stoichiometry of leaf N, P, and S in China's forests.Our study indicates that China's forests are likely limited by P and S deficiencies which may increase in the future.展开更多
Development of efficient and promising bifunctional electrocatalysts for oxygen reduction and evolutionreactions is desirable. Herein, cobalt nanoparticles embedded in nitrogen and sulfur co-doped carbonnanotubes(Co@N...Development of efficient and promising bifunctional electrocatalysts for oxygen reduction and evolutionreactions is desirable. Herein, cobalt nanoparticles embedded in nitrogen and sulfur co-doped carbonnanotubes(Co@NSCNT) were prepared by a facile pyrolytic treatment. The cobalt nanoparticles and co-doping of nitrogen and sulfur can improve the electron donor-acceptor characteristics of the carbon nan-otubes and provide more active sites for catalytic oxygen reduction and evolution reactions. The preparedCo@NSCNT, annealed at 900℃, showed excellent electrocatalytic performance and better durability thancommercial platinum catalysts. Additionally, Co@NSCNT-900 catalysts exhibited comparable onset poten-tials and Tafel slopes to ruthenium oxide. Overall, Co@NSCNT showed high activity and improved dura-bility for both oxygen evolution and reduction reactions.展开更多
The density functional theory(DFT)with dispersion corrections was used to study the adsorption behavior of sulfur and nitrogen compounds on NiMoS phase.The calculations were performed based on a hexagonal cluster mode...The density functional theory(DFT)with dispersion corrections was used to study the adsorption behavior of sulfur and nitrogen compounds on NiMoS phase.The calculations were performed based on a hexagonal cluster model including the Mo-edge,the S-edge,and the rarely mentioned corner site.It was found that the adsorption of quinoline is stronger than that of benzothiophene at all the active sites.It indicated the origin of the inhibition effect of nitrogen compounds on HDS.And Ni atoms located around Mo-edge and corner site exhibit higher adsorption selectivity to sulfur compounds than the nitrogen ones.It means that the increase in Ni-promoting effect may weaken the inhibition effect of nitrogen compounds on HDS.展开更多
Nitrogen and sulfur co-doped porous nanocarbon (ZIF-C-N-S) catalyst was successfully synthesized derived from ZIF-8 and thiourea precursors.The electrochemical measurements indicate that the as-obtained ZIF-C-N-S cata...Nitrogen and sulfur co-doped porous nanocarbon (ZIF-C-N-S) catalyst was successfully synthesized derived from ZIF-8 and thiourea precursors.The electrochemical measurements indicate that the as-obtained ZIF-C-N-S catalyst exhibits higher electrocatalytic activity for oxygen reduction reaction (ORR) in alkaline electrolyte and superior durability-longer than commercial Pt/C catalyst.The enhancment of electrocatalytic activity mainly be come from the open pore structure,large specific surface area as well as the synergistic effect resulted from the co-doping of N and S atoms.In addition,the ZIF-C-N-S catalyst is also used as the air cathode catalyst in the microbial fuel cell (MFC) device.The maximum power density and stable output voltage of ZIF-C-N-S based MFC are 1315 mW/m2 and 0.48 V,respectively,which is better than that of Pt/C based MFC.展开更多
The sulfides and nitrogen compounds in FCC diesel were analyzed by gas chromatography equipped with a pulsed flame photometric detector(GC-PFPD) and gas chromatography coupled with nitrogen chemiluminescence detection...The sulfides and nitrogen compounds in FCC diesel were analyzed by gas chromatography equipped with a pulsed flame photometric detector(GC-PFPD) and gas chromatography coupled with nitrogen chemiluminescence detection(GC-NCD). And the variation of sulfides and nitrogen compounds in FCC diesel produced from gas oil feed hydrotreated at different temperatures was investigated. The test results showed that two main types of sulfur compounds, i.e. benzothiophenes(BTs) and dibenzothiophenes(DBTs) were found in diesel. Nitrogen compounds are mainly composed of non-basic nitrogen compounds, and indoles and carbazoles account for about 98% of the total nitrogen contents. The sulfides in FCC diesel obtained from hydrotreated feed are mainly BTs with a small amount of 4-MDBT and 4,6-DMDBT. With the increase in FCC feed hydrotreating temperature, indoles content in FCC diesel increases, while carbazoles content decreases.展开更多
Nitrogen-doped three-dimensional(3 D) porous carbon materials have numerous applications due to their highly porous structures, abundant structural nitrogen heteroatom decoration and low densities. Herein,nitrogen dop...Nitrogen-doped three-dimensional(3 D) porous carbon materials have numerous applications due to their highly porous structures, abundant structural nitrogen heteroatom decoration and low densities. Herein,nitrogen doped hierarchical 3 D porous carbons(NHPC) were prepared via a novel metal–organic aerogel(MOA), using hexamethylenetetramine(HMT), 1,3,5-benzenetricarboxylic acid and copper(II) as starting materials. The morphology, porous structure of the building blocks in the NHPC can be tuned readily using different amount of HMT, which makes elongation of the pristine octahedron of HKUST-1 to give rise to different aspect ratio rod-like structures. The as-prepared NHPC with rod-like carbons exhibit high performance in lithium sulfur battery due to the rational ion transfer pathways, high N-doped doping and hierarchical porous structures. As a result, the initial specific capacity of 1341 m A h/g at rate of 0.5 C(1 C = 1675 m A h/g) and high-rate capability of 354 m A h/g at 5 C was achieved. The decay over 500 cycles is 0.08% per cycle at 1 C, highlighting the long-cycle Li–S batteries.展开更多
Nitrogen vacancies and sulfur co-doped g-C3N4 with outstanding N2 photofixation ability was synthesized via dielectric barrier discharge plasma treatment. X-ray diffraction, ultraviolet–visible spectroscopy, N2 adsor...Nitrogen vacancies and sulfur co-doped g-C3N4 with outstanding N2 photofixation ability was synthesized via dielectric barrier discharge plasma treatment. X-ray diffraction, ultraviolet–visible spectroscopy, N2 adsorption, scanning electron microscopy, X-ray photoelectron spectroscopy, photoluminescence spectroscopy, and temperature-programmed desorption were used to characterize the as-prepared catalyst. The results showed that plasma treatment cannot change the morphology of the as-prepared catalyst but introduces nitrogen vacancies and sulfur into g-C3N4 lattice simultaneously. The as-prepared co-doped g-C3N4 displays an ammonium ion production rate as high as 6.2 mg·L^-1·h^-1·gcat^-1, which is 2.3 and 25.8 times higher than that of individual N-vacancy-doped g-C3N4 and neat g-C3N4, respectively, as well as showing good catalytic stability. Experimental and density functional theory calculation results indicate that, compared with individual N vacancy doping, the introduction of sulfur can promote the activation ability of N vacancies to N2 molecules, leading to promoted N2 photofixation performance.展开更多
Recent studies have shown interest in flame retardants containing phosphorus, nitrogen and sulfur a combination small molecule with a promising new approach in preparing an important class of flame retardant materials...Recent studies have shown interest in flame retardants containing phosphorus, nitrogen and sulfur a combination small molecule with a promising new approach in preparing an important class of flame retardant materials. Tetraethyl piperazine-1,4-diyldiphosphonate (TEPP) and O,O,O’,O’- tetramethyl piperazine-1,4-diyldiphosphonothioate (TMPT), based on Piperazine derivatives, were prepared successfully and their structures were proved by means of 1H, 13C and 31P NMR. Cotton twill fabric was treated with both compounds to provide different add-on levels. Thermogravimetric Analysis (TGA), microscale combustion calorimeter (MCC), vertical and 45° flame test and limiting oxygen index (LOI) were performed on the treated cotton fabrics and showed promising results. When the treated twill fabrics (5 wt% - 7 wt% add-ons) were tested using the vertical flammability test (ASTMD6413-11), we observed that the ignited fabrics self extinguished and left behind a streak of char. Limiting oxygen index (LOI, ASTM 2863-09) was utilized to determine the effectiveness of the flame retardant on the treated fabrics. LOI values increased from 18 vol% oxygen in nitrogen for untreated twill fabric to a maximum of 30 vol% for the highest add-on of twill. Furthermore, Scanning Electron Microscope (SEM), Attenuated Total Reflection-Infrared (ATR-IR), and Thermogravimetric Analysis-Fourier Transform Infrared (TGA-FTIR) spectroscopy were employed to characterize the chemical structure on the treated fabrics, as well as, the surface morphology of char areas of treated and untreated fabrics. Additionally, analysis of the release gas products by TGA-FTIR shows some distinctive detail in the degradation of the treated fabrics during the burning process.展开更多
The nitrogen and sulfur co-doped carbon dots(N, S-CDs) with increased luminescence were synthesized by a hydrothermal process in one green pot by using glucose, and a new sulfur-doping source of sodium sulfite was dev...The nitrogen and sulfur co-doped carbon dots(N, S-CDs) with increased luminescence were synthesized by a hydrothermal process in one green pot by using glucose, and a new sulfur-doping source of sodium sulfite was developed.The synergistic effect of the N and S groups was well discussed through the structure analysis of Fourier transform infrared spectra and x-ray photoelectron spectra. The surface states of N, S-CDs embody more complicated functional groups, and S element exists as –SSO3, –C–SO3, and SO-42groups due to the introduction of sodium sulfite. The sulfur-containing groups passivate the surface of the CDs, and the relatively high sulfur groups may reduce the non-radiation centers. The fluorescence is affected by the hydroxyl group of the solvent. The quenching of Fe3+ ion to fluorescence and the sensitivity of fluorescence to p H were also investigated.展开更多
While lithium-sulfur(Li-S)battery has attracted remarkable attention owing to the high theoretical capacity,its practical application is still hindered by the shuttle and sluggish conversion kinetics of intermediate l...While lithium-sulfur(Li-S)battery has attracted remarkable attention owing to the high theoretical capacity,its practical application is still hindered by the shuttle and sluggish conversion kinetics of intermediate lithium polysulfides(Li PSs).Defect engineering,which can regulate the electronic structure and in turn influence the surface adsorption and catalytic capability,has been regarded as a feasible strategy to deal with the above challenges.However,few studies on nitrogen vacancies and their mechanisms are reported.Herein,cobalt nitride with nitrogen vacancies grown on multi-walled carbon nanotube(CNTCo N-VN)is designed and applied as the separator modification material to investigate the enhancing mechanism of nitrogen vacancies on Li-S batteries.The experimental evidence and theoretical calculation indicate that the introduction of nitrogen vacancies into cobalt nitride can enhance the chemical affinity to Li PSs and effectively hamper the shuttle effect.Meanwhile the reduced band gap of the d-band center of Co and p-band center of N for CNT-Co N-VNand the promoted diffusion of Li^(+) can expedite the solid-liquid and liquid-liquid conversions of sulfur species.Due to these superiorities,the cell with CNT-Co NVNmodified separator delivers a favorable initial capacity of 901 m Ah g^(-1)and a capacity of 660 m Ah g^(-1)can be achieved after 250 cycles at 2 C.This work explores the application of metal nitride with nitrogen vacancies and sheds light on the development of functional separators for high-efficient Li-S batteries.展开更多
Two hybrids of maize with different responses to sulfur were used in the pool experiment. The effects of nitrogen and sulfur on the grain quality of maize were evaluated. The results indicated that grain quality chang...Two hybrids of maize with different responses to sulfur were used in the pool experiment. The effects of nitrogen and sulfur on the grain quality of maize were evaluated. The results indicated that grain quality changed with the nutrition supply. The contents of proteins, amino acids, soluble sugar, crude fat, oil, N, P, K, S and microelements in the grain were improved due to nitrogen and sulfur fertilizer addition. But the effects of nitrogen and sulfur were not the same. Nitrogen increased starch content of the grain, but S decreased the content. Both N and S enhanced the proportion of amylopectin in starch. Sulfur nutrition significantly improved the grain quality of maize when a large amount of nitrogen was used together. Both hybrids had similar response to N and S treatments.展开更多
Lithium-sulfur(Li-S) batteries are promising energy-storage devices for future generations of portable electronics and electric vehicles because of the outstanding energy density,low cost,and nontoxic nature of S.In t...Lithium-sulfur(Li-S) batteries are promising energy-storage devices for future generations of portable electronics and electric vehicles because of the outstanding energy density,low cost,and nontoxic nature of S.In the past decades,various novel electrodes and electrolytes have been studied to improve the performance of Li-S batteries.However,the very limited lifespan and rate performance of Li-S batteries originating from the dissolution and diffusion of long-chain polysulfides in liquid electrolytes,and the intrinsic poor conductivity of S severely hinder their practical application.Herein,an electrospinning method was developed to fabricate a thin conductive interlayer consisting of meso-/microporous N/O dual-doping carbon nanofiber(CNF).The freestanding 3 D interwoven structure with conductive pathways for electrons and ions can enhance the contact between polysulfides and N/O atoms to realize the highly robust trapping of polysulfides via the extremely polar interaction.Consequently,combining the meso-microporous N/O dual-doping CNF interlayer with a monodispersed S nanoparticle cathode results in a superior electrochemical performance of 862.5 mAh/g after 200 cycles at 0.2 C and a cycle decay as low as 0.08% per cycle.An area specific capacity of 5.22 mAh/cm^(2) can be obtained after 100 cycles at 0.1 C with a high S loading of 7.5 mg/cm^(2).展开更多
The introduction of nitrogen heteroatoms into carbon materials is a facile and efficient strategy to regulate their reactivities and facilitate their potential applications in energy conversion and storage. However,mo...The introduction of nitrogen heteroatoms into carbon materials is a facile and efficient strategy to regulate their reactivities and facilitate their potential applications in energy conversion and storage. However,most of nitrogen heteroatoms are doped into the bulk phase of carbon without site selectivity, which significantly reduces the contacts of feedstocks with the active dopants in a conductive scaffold. Herein we proposed the chemical vapor deposition of a nitrogen-doped graphene skin on the 3D porous graphene framework and donated the carbon/carbon composite as surface N-doped grapheme(SNG). In contrast with routine N-doped graphene framework(NGF) with bulk distribution of N heteroatoms, the SNG renders a high surface N content of 1.81 at%, enhanced electrical conductivity of 31 S cm^(-1), a large surface area of 1531 m^2 g^(-1), a low defect density with a low I_D/I_G ratio of 1.55 calculated from Raman spectrum, and a high oxidation peak of 532.7 ℃ in oxygen atmosphere. The selective distribution of N heteroatoms on the surface of SNG affords the effective exposure of active sites at the interfaces of the electrode/electrolyte, so that more N heteroatoms are able to contact with oxygen feedstocks in oxygen reduction reaction or serve as polysulfide anchoring sites to retard the shuttle of polysulfides in a lithium–sulfur battery. This work opens a fresh viewpoint on the manipulation of active site distribution in a conductive scaffolds for multi-electron redox reaction based energy conversion and storage.展开更多
基金supported by the National Natural Science Foundation of China for Young Scholars(52109066)the Postdoctoral Science Foundation of Shaanxi Province,China(2023BSHTBZZ29)the China Postdoctoral Science Foundation(2022M712604 and 2023T160534).
文摘Soil nitrogen(N)is the main limiting nutrient for plant growth,which is sensitive to variations in the soil oxygen environment.To provide insights into plant N accumulation and yield under aerated and drip irrigation,a greenhouse tomato experiment was conducted with six treatments,including three fertilization types:inorganic fertilizer(NPK);organic fertilizer(OM);chemical(75%of applied N)+organic fertilizer(25%)(NPK+OM)under drip irrigation(DI)and aerated irrigation(AI)methods.Under Al,total soil carbon mineralization(C_(min))was significantly higher(by 5.7-7.0%)than under DI irrigation.C_(min)in the fertilizer treatments followed the order NPK+OM>OM>NPK under both AI and DI.Potentially mineralizable C(C_(0))and N(N_(0))was greater under AI than under DI.Gross N mineralization,gross nitrification,and NH_(4)^(+)immobilization rates were significantly higher under the AINPK treatment than the DINPK treatment by 2.58-3.27-,1.25-1.44-,and 1-1.26-fold,respectively.These findings demonstrated that AI and the addition of organic fertilizer accelerated the turnover of soil organic matter and N transformation processes,thereby enhancing N availability.Moreover,the combination of AI and organic fertilizer application was found to promote root growth(8.4-10.6%),increase the duration of the period of rapid N accumulation(ΔT),and increase the maximum N accumulation rate(V_(max)),subsequently encouraging aboveground dry matter accumulation.Consequently,the AI treatment yield was significantly greater(by 6.3-12.4%)than under the DI treatment.Further,N partial factor productivity(NPFP)and N harvest index(NHI)were greater under AI than under DI,by 6.3 to 12.4%,and 4.6 to 8.1%,respectively.The rankings of yield and NPFP remained consistent,with NPK+OM>OM>NPK under both AI and DI treatments.These results highlighted the positive impacts of AI and organic fertilizer application on soil N availability,N uptake,and overall crop yield in tomato.The optimal management measure was identified as the AINPK+OM treatment,which led to more efficient N management,better crop growth,higher yield,and more sustainable agricultural practices.
基金Under the auspices of National Basic Research Program of China(No.2012CB956100)National Natural Science Foundation of China(No.41301085).
文摘The rapid invasion of the plant Spartina alterniflora in coastal wetland areas can threaten the capacity of their soils to store carbon(C),nitrogen(N),and sulfur(S).In this study,we investigated the spatial and temporal distribution patterns of C,N and S of both soil and(native and invasive)plants in four typical coastal wetlands in the core area of the Yancheng National Nature Reserve,China.The results show that the invasive S.alterniflora greatly influenced soil properties and increased soil C,N and S storage capacity:the stock(mean±standard error)of soil organic carbon(SOC,(3.56±0.36)kg/m^3),total nitrogen(TN,(0.43±0.02)kg/m^3),and total sulfur(TS,(0.69±0.11)kg/m^3)in the S.alterniflora marsh exceeded those in the adjacent bare mudflat,Suaeda salsa marsh,and Phragmites australis marsh.Because of its greater biomass,plant C((1193.7±133.6)g/m^2),N((18.8±2.4)g/m^2),and S((9.4±1.5)g/m^2)storage of S.alterniflora was also larger than those of co-occurring native plants.More biogenic elements circulated in the soil-plant system of the S.alterniflora marsh,and their spatial and temporal distribution patterns were also changed by the S.alterniflora invasion.Soil properties changed by S.alterniflora’s invasion thereby indirectly affected the accumulation of soil C,N and S in this wetland ecosystem.The SOC,TN,and TS contents were positively correlated with soil electrical conductivity and moisture,but negatively correlated with the pH and bulk density of soil.Together,these results indicate that S.alterniflora invasion altered ecosystem processes,resulted in changes in net primary production and litter decomposition,and increased the soil C,N and S storage capacity in the invaded ecosystems in comparison to those with native tallgrass communities in the coastal wetlands of East China.
文摘Glucosinolates (GSs) are a group of plant secondary metabolites containing abundant nitrogen (N) and sulfur (S) mainly in Brassica and have the beneficial effects on human health including anti-carcinogenic, cholesterol-reducing and other pharmacological effects. The objective of this study was to investigate the effect of different concentrations of N (5, 10, and 20 mmol L-a, denoted by N5, N10 and N20) and S (0,5, 1, and 2 mmol L^-1, denoted by S0.5, S1 and S2) on the yield and GSs in pakchoi (Brassica campestris L. ssp. chinensis var. communis) in hydroponics. Results showed that N10 and N20 significantly enhanced the yield compared with N5, however, N20 had a negative effect relative to N10. Only with N10 and N20 low S supply (S0.5) reduced the yield. The concentrations of aliphatic GSs, aromatic GS and total GSs were enhanced by N5 and indolyl GSs were enhanced by N20. S2 enhanced the concentration of individual GS and total GSs. The concentrations of indolyl GSs were maximized in N20S2 treatment, whereas the highest concentrations of aliphatic GSs, aromatic GS and total GSs were found in N5S2 treatment. Effects of N and S on aliphatic GSs were higher than on indolyl GSs. The results suggest that the accumulation of aliphatic GSs and aromatic GS could be enhanced by low N and high S and restricted by high N while that of indolyl GSs could be enhanced by high N and high S.
基金financial support from the National Natural Science Foundation of China (Nos. 21476089, 21373091)the Provincial Science and Technology Project of Guangdong (No. 2014A030312007)
文摘Renewable lignin used for synthesizing materials has been proven to be highly potential in specific electrochemistry.Here,we report a simple method to synthesize nitrogen and sulfur co-doped carbon nanosheets by using bagasse lignin,denoted as lignin-derived carbon(LC).By adjusting the ratio of nitrogen source and annealing temperature,we obtained the ultrathin graphitic lignin carbon(LC-4-1000)with abundant wrinkles with high surface area of 1208 m2g_1 and large pore volume of 1.40 cm3g_1.In alkaline medium,LC-4-1000 has more positive half-wave potential and nearly current density compared to commercial Pt/C for oxygen reduction reaction(ORR).More importantly,LC-4-1000 also exhibits comparable activity and superior stability for ORR in acid medium due to its high graphitic N ratio and a direct four electron pathway for ORR.This study develops a cost-effective and highly efficient method to prepare biocarbon catalyst for ORR in fuel cells.
基金the Higher Education Commission (HEC) of Pakistan
文摘Field experiments were conducted at Cereal Crops Research Institute, Pirsabak, Nowshera, Pakistan, during winter 2003~2004; 2004~2005 to evaluate the effect of nitrogen; sulfur levels; methods of nitrogen application on canola (Brassica napus L. cv. Bulbul-98) under rainfed conditions. Four levels of S (0, 10, 20,; 30 kg/ha); three levels of N (40, 60,; 80 kg/ha); a control treatment with both nutrients at zero level were included in the experiments. Sulfur levels were applied at sowing while N levels were applied by three methods (100% soil application, 90% soil+10% foliar application,; 80% soil +20% foliar application). The experiments were laid out in randomized complete block (RCB) design having four replications. Oil content increased significantly up to 20 kg S/ha but further increase in S level did not enhance oil content. Glucosinolate content increased from 13.6 to 24.6 μmol/g as S rate was increased from 0 to 30 kg/ha. Protein content increased from 22.4% to 23.2% as S rate was increased from 0 to 20 kg/ha. Oil content responded negatively to the increasing N levels. The highest N level resulted in the highest values for protein (23.5%); glucosinolate (19.9 μmol/g) contents. Methods of N application had no significant impact on any parameters under study.
基金financially supported by the Natural Science Foundation of Beijing (No. L182062)the Beijing Nova program (Z171100001117077)+5 种基金the Yue Qi Young Scholar Project of China University of Mining & Technology (Beijing) (No. 2017QN17)the Fundamental Research Funds for the Central Universities (No.2014QJ02)the program for the Development of Science and Technology of Jilin Province (Nos. 20190201309JC and 20190101009JH)the Project of Development and Reform Commission of Jilin Province (No. 2019C042-1)the support from Natural Sciences and Engineering Research Council of Canada (NSERC)the University of Waterloo.
文摘Lithium-sulfur(Li-S) battery is a potential energy storage technology with high energy density and low cost. However, the gap between theoretical expectation and practical performance limits its wide implementation. Herein, we report a nitrogen-doped porous carbon derived from biomass pomelo peel as sulfur host material for Li-S batteries. The hierarchical porous architecture and the polar surface introduced by N-doping render a favorable combination of physical and chemical sulfur confinements as well as an expedite electron/ion transfer, thus contributing to a facilitated and stabilized sulfur electrochemistry. As a result, the corresponding sulfur composite electrodes exhibit an ultrahigh initial capacity of 1534.6 mAh g^-1, high coulombic efficiency over 98% upon 300 cycles, and decent rate capability up to 2 C. This work provides an economical and effective strategy for the fabrication of advanced carbonaceous sulfur host material as well as the significant improvement of Li-S battery performance.
基金financially supported by the National Key Research and Development Program of China (2016YFB0101202)the NSFC of China (Grants 91534205,21436003 and 21576031)Graduate Research and Innovation Foundation of Chongqing China (Grant No.CYB17021)
文摘Porous nitrogen-doped carbon is an especially promising material energy storage due to its excellentconductivity, stable physicochemical properties, easy processability, controllable porosity and low price.Herein, we reported a novel well-designed hierarchically porous nitrogen-doped carbon (HPNC) via acombination of salt template (ZnC12) and hard template (SiO2) as sulfur host for lithium-sulfur batter-ies. The low-melting ZnC12 is boiled off and leaves behind micropores and small size mesopores duringpyrolysis process, while the silica spheres are removed by acid leaching to generate interconnected 3Dnetwork of macropores. The HPNC-S electrode exhibits an initial specific capacity of 1355 mAh g^-l at 0.IC (IC= 1675 mAh g^-1 ), a high-rate capability of 623 mAh g-l at 2 C, and a small decay of 0.13% per cycleover 300 cycles at 0.2 C. This excellent rate capability and remarkable long-term cyclability of the HPNC-Selectrode are attributed to its hierarchical porous structures for confining the soluble lithium polysulfideas well as the nitrogen doping for high absorbability of lithium polysulfide.
基金support from the National Natural Science Foundation of China(41522207,41571130042)the State’s Key Project of Research and Development Plan of China(2016YFA0601002)
文摘Much attention has been paid to the stoichiometry of carbon(C), nitrogen(N), and phosphorus(P) because of their significance for plant growth and climate change. However, other nutrients, such as sulfur(S), are often ignored. In this study, we analyzed the stoichiometry of N, P, and S in leaves of 348 plant species in China's forests. The results show higher N content and higher molar ratios of N/P and P/S in Angiospermae than in Gymnospermae. At the family level, Ulmaceae absorbed more N and P from soils than other families, and Cupressaceae absorbed more S than other families. In addition,except for bamboo and other tropical forests, leaf N and P content of China's forests generally increased from low to middle latitudes and then slightly decreased or plateaued at high latitudes. Plant ecotypes, taxonomic groups, environmental conditions, atmospheric S precipitation, and soil-available N and P significantly affected the distribution and stoichiometry of leaf N, P, and S in China's forests.Our study indicates that China's forests are likely limited by P and S deficiencies which may increase in the future.
基金supported by the Human Resources Development(No.20184030202070) of the Korea Institute of Energy Technology Evaluation and Planning(KETEP) grant funded by the Korea government Ministry of Trade, Industry and Energy
文摘Development of efficient and promising bifunctional electrocatalysts for oxygen reduction and evolutionreactions is desirable. Herein, cobalt nanoparticles embedded in nitrogen and sulfur co-doped carbonnanotubes(Co@NSCNT) were prepared by a facile pyrolytic treatment. The cobalt nanoparticles and co-doping of nitrogen and sulfur can improve the electron donor-acceptor characteristics of the carbon nan-otubes and provide more active sites for catalytic oxygen reduction and evolution reactions. The preparedCo@NSCNT, annealed at 900℃, showed excellent electrocatalytic performance and better durability thancommercial platinum catalysts. Additionally, Co@NSCNT-900 catalysts exhibited comparable onset poten-tials and Tafel slopes to ruthenium oxide. Overall, Co@NSCNT showed high activity and improved dura-bility for both oxygen evolution and reduction reactions.
基金We gratefully acknowledge the support from the National Key Research and Development Plan(Grant No.2017YFB0306603)China Petrochemical Corporation funding(Sinopec Group,No.117006)on this work.
文摘The density functional theory(DFT)with dispersion corrections was used to study the adsorption behavior of sulfur and nitrogen compounds on NiMoS phase.The calculations were performed based on a hexagonal cluster model including the Mo-edge,the S-edge,and the rarely mentioned corner site.It was found that the adsorption of quinoline is stronger than that of benzothiophene at all the active sites.It indicated the origin of the inhibition effect of nitrogen compounds on HDS.And Ni atoms located around Mo-edge and corner site exhibit higher adsorption selectivity to sulfur compounds than the nitrogen ones.It means that the increase in Ni-promoting effect may weaken the inhibition effect of nitrogen compounds on HDS.
基金the National Natural Science Foundation of China(No.51472034)the Opening Project of Key Laboratory of Optoelectronic Chemical Materials and Devices,Ministry of Education,Jianghan University(No.JDGD-201806)。
文摘Nitrogen and sulfur co-doped porous nanocarbon (ZIF-C-N-S) catalyst was successfully synthesized derived from ZIF-8 and thiourea precursors.The electrochemical measurements indicate that the as-obtained ZIF-C-N-S catalyst exhibits higher electrocatalytic activity for oxygen reduction reaction (ORR) in alkaline electrolyte and superior durability-longer than commercial Pt/C catalyst.The enhancment of electrocatalytic activity mainly be come from the open pore structure,large specific surface area as well as the synergistic effect resulted from the co-doping of N and S atoms.In addition,the ZIF-C-N-S catalyst is also used as the air cathode catalyst in the microbial fuel cell (MFC) device.The maximum power density and stable output voltage of ZIF-C-N-S based MFC are 1315 mW/m2 and 0.48 V,respectively,which is better than that of Pt/C based MFC.
文摘The sulfides and nitrogen compounds in FCC diesel were analyzed by gas chromatography equipped with a pulsed flame photometric detector(GC-PFPD) and gas chromatography coupled with nitrogen chemiluminescence detection(GC-NCD). And the variation of sulfides and nitrogen compounds in FCC diesel produced from gas oil feed hydrotreated at different temperatures was investigated. The test results showed that two main types of sulfur compounds, i.e. benzothiophenes(BTs) and dibenzothiophenes(DBTs) were found in diesel. Nitrogen compounds are mainly composed of non-basic nitrogen compounds, and indoles and carbazoles account for about 98% of the total nitrogen contents. The sulfides in FCC diesel obtained from hydrotreated feed are mainly BTs with a small amount of 4-MDBT and 4,6-DMDBT. With the increase in FCC feed hydrotreating temperature, indoles content in FCC diesel increases, while carbazoles content decreases.
基金supported by the National Natural Science Foundation of China(Grant no.U1610105,51672033,U1610255)the Natural Science Foundation of Liaoning Province(201602170)+1 种基金the Open Fund of Key Laboratory of Interface Science and Engineering in Advanced Materials,Ministry of Education(KLISEAM 201601)the Open Sharing Fund Projects for Large Equipments Testing,Dalian University of Technology(2016-54)
文摘Nitrogen-doped three-dimensional(3 D) porous carbon materials have numerous applications due to their highly porous structures, abundant structural nitrogen heteroatom decoration and low densities. Herein,nitrogen doped hierarchical 3 D porous carbons(NHPC) were prepared via a novel metal–organic aerogel(MOA), using hexamethylenetetramine(HMT), 1,3,5-benzenetricarboxylic acid and copper(II) as starting materials. The morphology, porous structure of the building blocks in the NHPC can be tuned readily using different amount of HMT, which makes elongation of the pristine octahedron of HKUST-1 to give rise to different aspect ratio rod-like structures. The as-prepared NHPC with rod-like carbons exhibit high performance in lithium sulfur battery due to the rational ion transfer pathways, high N-doped doping and hierarchical porous structures. As a result, the initial specific capacity of 1341 m A h/g at rate of 0.5 C(1 C = 1675 m A h/g) and high-rate capability of 354 m A h/g at 5 C was achieved. The decay over 500 cycles is 0.08% per cycle at 1 C, highlighting the long-cycle Li–S batteries.
基金supported by the National Natural Science Foundation of China(41701364)the Liaoning Doctoral Priming Fund Project(201601333,20170520109)+2 种基金the Basic Scientific Research in Colleges and Universities in Heilongjiang Province(KJCXZD201715)the Harbin Science and Technology Bureau Project(2017RAQXJ145)supported by Super Computing Center of Dalian University of Technology~~
文摘Nitrogen vacancies and sulfur co-doped g-C3N4 with outstanding N2 photofixation ability was synthesized via dielectric barrier discharge plasma treatment. X-ray diffraction, ultraviolet–visible spectroscopy, N2 adsorption, scanning electron microscopy, X-ray photoelectron spectroscopy, photoluminescence spectroscopy, and temperature-programmed desorption were used to characterize the as-prepared catalyst. The results showed that plasma treatment cannot change the morphology of the as-prepared catalyst but introduces nitrogen vacancies and sulfur into g-C3N4 lattice simultaneously. The as-prepared co-doped g-C3N4 displays an ammonium ion production rate as high as 6.2 mg·L^-1·h^-1·gcat^-1, which is 2.3 and 25.8 times higher than that of individual N-vacancy-doped g-C3N4 and neat g-C3N4, respectively, as well as showing good catalytic stability. Experimental and density functional theory calculation results indicate that, compared with individual N vacancy doping, the introduction of sulfur can promote the activation ability of N vacancies to N2 molecules, leading to promoted N2 photofixation performance.
文摘Recent studies have shown interest in flame retardants containing phosphorus, nitrogen and sulfur a combination small molecule with a promising new approach in preparing an important class of flame retardant materials. Tetraethyl piperazine-1,4-diyldiphosphonate (TEPP) and O,O,O’,O’- tetramethyl piperazine-1,4-diyldiphosphonothioate (TMPT), based on Piperazine derivatives, were prepared successfully and their structures were proved by means of 1H, 13C and 31P NMR. Cotton twill fabric was treated with both compounds to provide different add-on levels. Thermogravimetric Analysis (TGA), microscale combustion calorimeter (MCC), vertical and 45° flame test and limiting oxygen index (LOI) were performed on the treated cotton fabrics and showed promising results. When the treated twill fabrics (5 wt% - 7 wt% add-ons) were tested using the vertical flammability test (ASTMD6413-11), we observed that the ignited fabrics self extinguished and left behind a streak of char. Limiting oxygen index (LOI, ASTM 2863-09) was utilized to determine the effectiveness of the flame retardant on the treated fabrics. LOI values increased from 18 vol% oxygen in nitrogen for untreated twill fabric to a maximum of 30 vol% for the highest add-on of twill. Furthermore, Scanning Electron Microscope (SEM), Attenuated Total Reflection-Infrared (ATR-IR), and Thermogravimetric Analysis-Fourier Transform Infrared (TGA-FTIR) spectroscopy were employed to characterize the chemical structure on the treated fabrics, as well as, the surface morphology of char areas of treated and untreated fabrics. Additionally, analysis of the release gas products by TGA-FTIR shows some distinctive detail in the degradation of the treated fabrics during the burning process.
基金Project by the National Natural Science Foundation of China(Grant Nos.51571085,11805052,and 61705062)the Research Project for Basic and Forefront Technology of Henan Province,China(Grant No.162300410219)the Doctor Foundation of Henan Polytechnic University,China(Grant No.B2014049)
文摘The nitrogen and sulfur co-doped carbon dots(N, S-CDs) with increased luminescence were synthesized by a hydrothermal process in one green pot by using glucose, and a new sulfur-doping source of sodium sulfite was developed.The synergistic effect of the N and S groups was well discussed through the structure analysis of Fourier transform infrared spectra and x-ray photoelectron spectra. The surface states of N, S-CDs embody more complicated functional groups, and S element exists as –SSO3, –C–SO3, and SO-42groups due to the introduction of sodium sulfite. The sulfur-containing groups passivate the surface of the CDs, and the relatively high sulfur groups may reduce the non-radiation centers. The fluorescence is affected by the hydroxyl group of the solvent. The quenching of Fe3+ ion to fluorescence and the sensitivity of fluorescence to p H were also investigated.
基金supported by the Beijing Institute of Technology Research Fund Program for Young Scholars and the Analysis&Testing Center(Beijing Institute of Technology)the National Natural Science Foundation of China(22179007)。
文摘While lithium-sulfur(Li-S)battery has attracted remarkable attention owing to the high theoretical capacity,its practical application is still hindered by the shuttle and sluggish conversion kinetics of intermediate lithium polysulfides(Li PSs).Defect engineering,which can regulate the electronic structure and in turn influence the surface adsorption and catalytic capability,has been regarded as a feasible strategy to deal with the above challenges.However,few studies on nitrogen vacancies and their mechanisms are reported.Herein,cobalt nitride with nitrogen vacancies grown on multi-walled carbon nanotube(CNTCo N-VN)is designed and applied as the separator modification material to investigate the enhancing mechanism of nitrogen vacancies on Li-S batteries.The experimental evidence and theoretical calculation indicate that the introduction of nitrogen vacancies into cobalt nitride can enhance the chemical affinity to Li PSs and effectively hamper the shuttle effect.Meanwhile the reduced band gap of the d-band center of Co and p-band center of N for CNT-Co N-VNand the promoted diffusion of Li^(+) can expedite the solid-liquid and liquid-liquid conversions of sulfur species.Due to these superiorities,the cell with CNT-Co NVNmodified separator delivers a favorable initial capacity of 901 m Ah g^(-1)and a capacity of 660 m Ah g^(-1)can be achieved after 250 cycles at 2 C.This work explores the application of metal nitride with nitrogen vacancies and sheds light on the development of functional separators for high-efficient Li-S batteries.
基金supported by National Natural Science Foundation of China(39870525).
文摘Two hybrids of maize with different responses to sulfur were used in the pool experiment. The effects of nitrogen and sulfur on the grain quality of maize were evaluated. The results indicated that grain quality changed with the nutrition supply. The contents of proteins, amino acids, soluble sugar, crude fat, oil, N, P, K, S and microelements in the grain were improved due to nitrogen and sulfur fertilizer addition. But the effects of nitrogen and sulfur were not the same. Nitrogen increased starch content of the grain, but S decreased the content. Both N and S enhanced the proportion of amylopectin in starch. Sulfur nutrition significantly improved the grain quality of maize when a large amount of nitrogen was used together. Both hybrids had similar response to N and S treatments.
基金the support from the National Key Research and Development Program(No.2018YFB1107500)the Liao Ning Revitalization Talents Program(No.XLYC1907144)+1 种基金the National Natural Science Foundation of China(No.51503024)the Dalian Youth Science and Technology Star Project Support Program(No.2017RQ104)。
文摘Lithium-sulfur(Li-S) batteries are promising energy-storage devices for future generations of portable electronics and electric vehicles because of the outstanding energy density,low cost,and nontoxic nature of S.In the past decades,various novel electrodes and electrolytes have been studied to improve the performance of Li-S batteries.However,the very limited lifespan and rate performance of Li-S batteries originating from the dissolution and diffusion of long-chain polysulfides in liquid electrolytes,and the intrinsic poor conductivity of S severely hinder their practical application.Herein,an electrospinning method was developed to fabricate a thin conductive interlayer consisting of meso-/microporous N/O dual-doping carbon nanofiber(CNF).The freestanding 3 D interwoven structure with conductive pathways for electrons and ions can enhance the contact between polysulfides and N/O atoms to realize the highly robust trapping of polysulfides via the extremely polar interaction.Consequently,combining the meso-microporous N/O dual-doping CNF interlayer with a monodispersed S nanoparticle cathode results in a superior electrochemical performance of 862.5 mAh/g after 200 cycles at 0.2 C and a cycle decay as low as 0.08% per cycle.An area specific capacity of 5.22 mAh/cm^(2) can be obtained after 100 cycles at 0.1 C with a high S loading of 7.5 mg/cm^(2).
基金supported by the National Key Research and Development Program(2016YFA0202500 and 2016YFA0200102)the Natural Scientific Foundation of China(21776019)
文摘The introduction of nitrogen heteroatoms into carbon materials is a facile and efficient strategy to regulate their reactivities and facilitate their potential applications in energy conversion and storage. However,most of nitrogen heteroatoms are doped into the bulk phase of carbon without site selectivity, which significantly reduces the contacts of feedstocks with the active dopants in a conductive scaffold. Herein we proposed the chemical vapor deposition of a nitrogen-doped graphene skin on the 3D porous graphene framework and donated the carbon/carbon composite as surface N-doped grapheme(SNG). In contrast with routine N-doped graphene framework(NGF) with bulk distribution of N heteroatoms, the SNG renders a high surface N content of 1.81 at%, enhanced electrical conductivity of 31 S cm^(-1), a large surface area of 1531 m^2 g^(-1), a low defect density with a low I_D/I_G ratio of 1.55 calculated from Raman spectrum, and a high oxidation peak of 532.7 ℃ in oxygen atmosphere. The selective distribution of N heteroatoms on the surface of SNG affords the effective exposure of active sites at the interfaces of the electrode/electrolyte, so that more N heteroatoms are able to contact with oxygen feedstocks in oxygen reduction reaction or serve as polysulfide anchoring sites to retard the shuttle of polysulfides in a lithium–sulfur battery. This work opens a fresh viewpoint on the manipulation of active site distribution in a conductive scaffolds for multi-electron redox reaction based energy conversion and storage.