Bifunctional hybrid anodes(BHAs),which are both a high-performance active host material for lithium-ion storage as well as a guiding agent for homogeneous lithium metal nucleation and growth,exhibit significant potent...Bifunctional hybrid anodes(BHAs),which are both a high-performance active host material for lithium-ion storage as well as a guiding agent for homogeneous lithium metal nucleation and growth,exhibit significant potential as anodes for next-generation high-energy-density lithium-ion batteries(LIBs).In this study,sulfur-doped hard carbon nanosphere assemblies(S-HCNAs)were prepared through a hydrothermal treatment of a liquid organic precursor,followed by high-temperature thermal annealing with elemental sulfur for application as BHAs for LIBs.In a carbonate-based electrolyte containing fluoroethylene carbonate additive,the S-HCNAs showed high lithium-ion storage capacities in sloping as well as plateau voltage sections,good rate capabilities,and stable cyclabilities.In addition,high average Coulombic efficiencies(CEs)of~96.9%were achieved for dual lithium-ion and lithium metal storage cycles.In the LIB full-cell tests with typical NCM811 cathodes,the S-HCNA-based BHAs containing~400 mA h g^(−1) of excess lithium led to high energy and power densities of~500Wh kg^(−1) and~1695Wkg^(−1),respectively,and a stable cycling performance with~100%CEs was achieved.展开更多
Metallic lithium(Li)is considered the“Holy Grail”anode material for the nextgeneration of Li batteries with high energy density owing to the extraordinary theoretical specific capacity and the lowest negative electr...Metallic lithium(Li)is considered the“Holy Grail”anode material for the nextgeneration of Li batteries with high energy density owing to the extraordinary theoretical specific capacity and the lowest negative electrochemical potential.However,owing to inhomogeneous Li-ion flux,Li anodes undergo uncontrollable Li deposition,leading to limited power output and practical applications.Carbon materials and their composites with controllable structures and properties have received extensive attention to guide the homogeneous growth of Li to achieve high-performance Li anodes.In this review,the correlation between the behavior of Li anode and the properties of carbon materials is proposed.Subsequently,we review emerging strategies for rationally designing high-performance Li anodes with carbon materials,including interface engineering(stabilizing solid electrolyte interphase layer and other functionalized interfacial layer)and architecture design of host carbon(constructing three-dimension structure,preparing hollow structure,introducing lithiophilic sites,optimizing geometric effects,and compositing with Li).Based on the insights,some prospects on critical challenges and possible future research directions in this field are concluded.It is anticipated that further innovative works on the fundamental chemistry and theoretical research of Li anodes are needed.展开更多
The corrosion inhibition efficacy of titanate(CaTiO_(3))for carbon anodes in molten salts was investigated through various analytical techniques,including linear sweep voltammetry,X-ray diffraction,scanning electron m...The corrosion inhibition efficacy of titanate(CaTiO_(3))for carbon anodes in molten salts was investigated through various analytical techniques,including linear sweep voltammetry,X-ray diffraction,scanning electron microscopy,and energy dispersion spectroscopy.The results demonstrate that the addition of CaTiO_(3)corrosion inhibitor efficiently passivates the carbon anode and leads to the formation of a dense CaTiO_(3)layer during the electrolysis process in molten CaCl_(2)-CaO.Subsequently,the passivated carbon anode effectively undergoes the oxygen evolution reaction,with an optimal current density for passivation identified at 400 m A/cm~2.Comprehensive investigations,including CaTiO_(3)solubility tests in molten CaCl_(2)-CaO and numerical modeling of the stability of complex ionic structures,provide compelling evidence supporting“complexation-precipitation”passivation mechanism.This mechanism involves the initial formation of a complex containing TiO_(2)·nCaO by CaTiO_(3)and CaO,which subsequently decomposes to yield CaTiO_(3),firmly coating the surface of the carbon anode.In practical applications,the integration of CaTiO_(3)corrosion inhibitor with the carbon anode leads to the successful preparation of the FeCoNiCrMn high-entropy alloy without carbon contamination in the molten CaCl_(2)-Ca O.展开更多
Tin disulfide(SnS_(2)),due to large interlayer spacing and high theoretical capacity,is regarded as a prospective anode material for lithium-ion batteries.Nevertheless,the poor electron conductivity of SnS_(2) and hug...Tin disulfide(SnS_(2)),due to large interlayer spacing and high theoretical capacity,is regarded as a prospective anode material for lithium-ion batteries.Nevertheless,the poor electron conductivity of SnS_(2) and huge volumetric change during the lithiation/delithiation process lead to a rapid capacity decay of the battery,hindering its commercialization.To address these issues,herein,SnS_(2) is in-situ grown on the surface of carbon nanotubes(CNT)and then encapsulated with a layer of porous amorphous carbon(CNT/SnS_(2)@C)by simple solvothermal and further carbonization treatment.The synergistic effect of CNT and porous carbon layer not only enhances the electrical co nductivity of SnS_(2) but also limits the huge volumetric change to avoid the pulverization and detachment of SnS_(2).Density functional theo ry calculations show that CNT/SnS_(2)@C has high Li^(+)adsorption and lithium storage capacity achieving high reaction kinetics.Consequently,cells with the CNT/SnS_(2)@C anode exhibit a high lithium storage capacity of 837mAh/g after 100 cycles at 0.1 A/g and retaining a capacity of 529.8 mAh/g under 1.0 A/g after 1000 cycles.This study provides a fundamental understanding of the electrochemical processes and beneficial guidance to design high-performance SnS_(2)-based anodes for LIBs.展开更多
Zincophilic property and high electrical conductivity are both very important parameters to design novel Zn anode for aqueous Zn-ion batteries(AZIBs).However,single material is difficult to exhibit zincophilic propert...Zincophilic property and high electrical conductivity are both very important parameters to design novel Zn anode for aqueous Zn-ion batteries(AZIBs).However,single material is difficult to exhibit zincophilic property and high electrical conductivity at the same time.Herein,originating from theoretical calculation,a zincophilic particle regulation strategy is proposed to address these limitations and carbon coated Na_(3)V_(2)(PO_(4))_(3)is taken as an example to be a protective layer on zinc metal(NVPC@Zn).Na_(3)V_(2)(PO_(4))_(3)(NVP)is a common cathode material for Zn-ion batteries,which is zincophilic.Carbon materials not only offer an electron pathway to help Zn deposition onto NVPC surface,but also enhance the zinc nucleophilicity of Na_(3)V_(2)(PO_(4))_(3).Hence,this hybrid coating layer can tune zinc deposition and resist side reactions such as hydrogen generation and Zn metal corrosion.Experimentally,a symmetrical battery with NVPC@Zn electrode displays highly reversible plating/stripping behavior with a long cycle lifespan over 1800 h at2 mA cm^(-2),much better than carbon and Na_(3)V_(2)(PO_(4))_(3)solely modified Zn electrodes.When the Na_(3)V_(2)(PO_(4))_(3)is replaced with zincophobic Al2O3or zincophilic V2O3,the stability of the modified zinc anodes is also prolonged.This strategy expands the option of zincophilic materials and provides a general and effective way to stabilize the Zn electrode.展开更多
Cobalt sulphides attract much attention as anode materials for Li-ion batteries(LIBs).However,its poor conductivity,low initial column efficiency and large volume changes during cycling have hindered its further devel...Cobalt sulphides attract much attention as anode materials for Li-ion batteries(LIBs).However,its poor conductivity,low initial column efficiency and large volume changes during cycling have hindered its further development.Herein,novel interlaced CoS nanosheets were firstly prepared on Carbon Fiber Cloth(CFC)by two hydrothermal reactions followed with carbon coating via carbonizing dopamine(CoS NS@C/CFC).As a freestanding anode,the nanosheet structure of CoS not only accommodates the volume variation,but also provides a large interface area to proceed the charge transfer reaction.In addition,CFC works as both a three-dimensional skeleton and an active substance which can further improve the areal capacity of the resulting electrode.Furthermore,the coated carbon combined with the CFC work as a 3D conductive network to facilitate the electron conduction.The obtained CoS NS@C/CFC,and the contrast sample prepared with the same procedure but without carbon coating(CoS NS/CFC),are characterized with XRD,SEM,TEM,XPS and electrochemical measurements.The results show that the CoS NS@C/CFC possesses much improved electrochemical performance due to the synergistic effect of nanosheet CoS,the coated carbon and the CFC substrate,exhibiting high initial columbic efficiency(~87%),high areal capacity(2.5 at 0.15 mA cm−2),excellent rate performance(1.6 at 2.73 mA cm−2)and improved cycle stability(87.5%capacity retention after 300 cycles).This work may provide a new route to explore freestanding anodes with high areal specific capacity for LIBs.展开更多
To achieve high energy density in lithium batteries,the construction of lithium-ion/metal hybrid anodes is a promising strategy.In particular,because of the anisotropy of graphite,hybrid anode formed by graphite/Li me...To achieve high energy density in lithium batteries,the construction of lithium-ion/metal hybrid anodes is a promising strategy.In particular,because of the anisotropy of graphite,hybrid anode formed by graphite/Li metal has low transport kinetics and is easy to causes the growth of lithium dendrites and accumulation of dead Li,which seriously affects the cycle life of batteries and even causes safety problems.Here,by comparing graphite with two types of hard carbon,it was found that hybrid anode formed by hard carbon and lithium metal,possessing more disordered mesoporous structure and lithophilic groups,presents better performance.Results indicate that the mesoporous structure provides abundant active site and storage space for dead lithium.With the synergistic effect of this structure and lithophilic functional groups(–COOH),the reversibility of hard carbon/lithium metal hybrid anode is maintained,promoting uniform deposition of lithium metal and alleviating formation of lithium dendrites.The hybrid anode maintains a 99.5%Coulombic efficiency(CE)after 260 cycles at a specific capacity of 500 m Ah/g.This work provides new insights into the hybrid anodes formed by carbon-based materials and lithium metal with high specific energy and fast charging ability.展开更多
Carbonaceous materials are regarded as a promising anode material for potassium ion batteries(PIBs)due to their high electronic conductivity, abundant resources and low cost. However, relatively low storage capacity a...Carbonaceous materials are regarded as a promising anode material for potassium ion batteries(PIBs)due to their high electronic conductivity, abundant resources and low cost. However, relatively low storage capacity and structural instability still hinder their practical application. Herein, high sulfur-doped hard carbon(SHC-3) with a sulfur up to 27.05 at% is synthesized from polystyrene and sulfur as precursors. As an anode for PIBs, the SHC-3 delivers a superb cycling stability and rate performance(298.1 mAh g^(-1)at 100 mA g^(-1) for 1000 cycles, a capacity retention of 95.2%;220.2 mAh g^(-1)at 500 mA g^(-1) after 5200 cycles). The potassium storage of SHC-3 exhibits excellent cyclic stability at both low and high rates.Structure and kinetic studies demonstrate that the larger interlayer spacing(0.382 nm) of the SHC-3 accelerates the diffusion of potassium ions and effectively alleviates the volume expansion, and thus maintains the structure stability during the process of potassization/de-potassization. Meanwhile, the density functional theory calculation shows that the doped sulfur atoms provide abundant active sites for the adsorption of potassium ions, thereby increasing the reversible capacity of PIBs. This work provides a new scheme for the design of carbonaceous anode materials with high capacity and long cycle life.展开更多
Silicon(Si)has been studied as a promising alloying type anode for lithium-ion batteries due to its high specific capacity,low operating potential and abundant resources.Nevertheless,huge volume expansion during alloy...Silicon(Si)has been studied as a promising alloying type anode for lithium-ion batteries due to its high specific capacity,low operating potential and abundant resources.Nevertheless,huge volume expansion during alloying/dealloying processes and low electronic conductivity of Si anodes restrict their electrochemical performance.Thus,carbon(C)materials with special physical and chemical properties are applied in Si anodes to effectively solve these problems.This review focuses on current status in the exploration of Si/C anodes,including the lithiation mechanism and solid electrolyte interface formation,various carbon sources in Si/C anodes,such as traditional carbon sources(graphite,pitch,biomass),and novel carbon sources(MXene,graphene,MOFs-derived carbon,graphdiyne,etc.),as well as interfacial bonding modes of Si and C in the Si/C anodes.Finally,we summarize and prospect the selection of carbonaceous materials,structural design and interface control of Si/C anodes,and application of Si/C anodes in all-solid-state lithium-ion batteries and sodium-ion batteries et al.This review will help researchers in the design of novel Si/C anodes for rechargeable batteries.展开更多
Recent technological advancements,such as portable electronics and electric vehicles,have created a pressing need for more efficient energy storage solutions.Lithium-ion batteries(LIBs)have been the preferred choice f...Recent technological advancements,such as portable electronics and electric vehicles,have created a pressing need for more efficient energy storage solutions.Lithium-ion batteries(LIBs)have been the preferred choice for these applications,with graphite being the standard anode material due to its stability.However,graphite falls short of meeting the growing demand for higher energy density,possessing a theoretical capacity that lags behind.To address this,researchers are actively seeking alternative materials to replace graphite in commercial batteries.One promising avenue involves lithiumalloying materials like silicon and phosphorus,which offer high theoretical capacities.Carbon-silicon composites have emerged as a viable option,showing improved capacity and performance over traditional graphite or pure silicon anodes.Yet,the existing methods for synthesizing these composites remain complex,energy-intensive,and costly,preventing widespread adoption.A groundbreaking approach is presented here:the use of a laser writing strategy to rapidly transform common organic carbon precursors and silicon blends into efficient“graphenic silicon”composite thin films.These films exhibit exceptional structural and energy storage properties.The resulting three-dimensional porous composite anodes showcase impressive attributes,including ultrahigh silicon content,remarkable cyclic stability(over 4500 cycles with∼40%retention),rapid charging rates(up to 10 A g^(-1)),substantial areal capacity(>5.1 mAh cm^(-2)),and excellent gravimetric capacity(>2400 mAh g^(-1) at 0.2 A g^(-1)).This strategy marks a significant step toward the scalable production of high-performance LIB materials.Leveraging widely available,cost-effective precursors,the laser-printed“graphenic silicon”composites demonstrate unparalleled performance,potentially streamlining anode production while maintaining exceptional capabilities.This innovation not only paves the way for advanced LIBs but also sets a precedent for transforming various materials into high-performing electrodes,promising reduced complexity and cost in battery production.展开更多
Covalent organic frameworks(COFs)after undergoing the superlithiation process promise high-capacity anodes while suffering from sluggish reaction kinetics and low electrochemical utilization of redox-active sites.Here...Covalent organic frameworks(COFs)after undergoing the superlithiation process promise high-capacity anodes while suffering from sluggish reaction kinetics and low electrochemical utilization of redox-active sites.Herein,integrating carbon nanotubes(CNTs)with imine-linked covalent organic frameworks(COFs)was rationally executed by in-situ Schiff-base condensation between 1,1′-biphenyl]-3,3′,5,5′-tetracarbaldehyde and 1,4-diaminobenzene in the presence of CNTs to produce core–shell heterostructured composites(CNT@COF).Accordingly,the redox-active shell of COF nanoparticles around one-dimensional conductive CNTs synergistically creates robust three-dimensional hybrid architectures with high specific surface area,thus promoting electron transport and affording abundant active functional groups accessible for electrochemical utilization throughout the whole electrode.Remarkably,upon the full activation with a superlithiation process,the as-fabricated CNT@COF anode achieves a specific capacity of 2324 mAh g^(−1),which is the highest specific capacity among organic electrode materials reported so far.Meanwhile,the superior rate capability and excellent cycling stability are also obtained.The redox reaction mechanisms for the COF moiety were further revealed by Fourier-transform infrared spectroscopy in conjunction with X-ray photoelectron spectroscopy,involving the reversible redox reactions between lithium ions and C=N groups and gradual electrochemical activation of the unsaturated C=C bonds within COFs.展开更多
Hard carbons are promising anode materials for sodium-ion batteries.To meet practical requirements,searching for durable and conductive carbon with a stable interface is of great importance.Here,we prepare a series of...Hard carbons are promising anode materials for sodium-ion batteries.To meet practical requirements,searching for durable and conductive carbon with a stable interface is of great importance.Here,we prepare a series of vanadiummodified hard carbon submicrospheres by using hydrothermal carbonization followed by high-temperature pyrolysis.Significantly,the introduction of vanadium can facilitate the nucleation and uniform growth of carbon spheres and generate abundant V-O-C interface bonds,thus optimizing the reaction kinetic.Meanwhile,the optimized hard carbon spheres modified by vanadium carbide,with sufficient pseudographitic domains,provide more active sites for Na ion migration and storage.As a result,the HC/VC-1300 electrode exhibits excellent Na storage performance,including a high capacity of 420 mAh g^(-1) at 50mA g^(-1) and good rate capability at 1 A g^(-1).This study proposes a new strategy for the synthesis of hard carbon spheres with high tap density and emphasizes the key role of pseudographitic structure for Na storage and interface stabilization.展开更多
Carbonaceous materials are considered as ideal anode for potassium ion batteries(PIBs)due to their abundant resources and stable physical and chemical properties.However,improvements of reversible capacity and cycle p...Carbonaceous materials are considered as ideal anode for potassium ion batteries(PIBs)due to their abundant resources and stable physical and chemical properties.However,improvements of reversible capacity and cycle performance are still needed,aiming to the practical application.Herein,S/N/O tridoped carbon(SNOC)nanospheres are prepared by in-situ vulcanized polybenzoxazine.The S/N/O tridoped carbon matrix provides abundant active sites for potassium ion adsorption and effectively improves potassium storage capacity.Moreover,the SNOC nanospheres possess large carbon interlayer spacing and high specific surface area,which broaden the diffusion pathway of potassium ions and accelerate the electron transfer speed,resulting in excellent rate performance.As an anode for PIBs,SNOC shows attractive rate performance(438.5 mA h g^(-1) at 50 mA g^(-1) and 174.5 mA h g^(-1) at2000 mA g^(-1)),ultra-high reversible capacity(397.4 mA h g^(-1) at 100 mA g^(-1) after 700 cycles)and ultra-long cycling life(218.9 mA h g^(-1) at 2000 mA g^(-1) after 7300 cycles,123.1 mA h g^(-1) at3000 mA g^(-1) after 16500 cycles and full cell runs for 4000 cycles).Density functional theory calculation confirms that S/N/O tri-doping enhances the adsorption and diffusion of potassium ions,and in-situ Fourier-transform infrared explores explored the potassium storage mechanism of SNOC.展开更多
Initial Coulombic efficiency(ICE)has been widely adopted in battery research as a quantifiable indicator for the lifespan,energy density and rate performance of batteries.Hard carbon materials have been accepted as a ...Initial Coulombic efficiency(ICE)has been widely adopted in battery research as a quantifiable indicator for the lifespan,energy density and rate performance of batteries.Hard carbon materials have been accepted as a promising anode family for sodium-ion batteries(SIBs)owing to their outstanding performance.However,the booming application of hard carbon anodes has been significantly slowed by the low ICE,leading to a reduced energy density at the cell level.This offers a challenge to develop high ICE hard carbon anodes to meet the applications of high-performance SIBs.Here,we discuss the definition and factors of ICE and describe several typical strategies to improve the ICE of hard carbon anodes.The strategies for boosting the ICE of such anodes are also systematically categorized into several aspects including structure design,surface engineering,electrolyte optimization and pre-sodiation.The key challenges and perspectives in the development of high ICE hard carbon anodes are also outlined.展开更多
Improving zinc metal(Zn^(0))reversibility and minimizing the N/P ratio are critical to boosting the energy density of Zn^(0) batteries.However,in reality,an excess Zn source is usually adopted to offset the irreversib...Improving zinc metal(Zn^(0))reversibility and minimizing the N/P ratio are critical to boosting the energy density of Zn^(0) batteries.However,in reality,an excess Zn source is usually adopted to offset the irreversible zinc loss and guarantee sufficient zinc cycling,which sacrifices the energy density and leads to poor practicability of Zn^(0) batteries.To address the above conundrum,here,we report a lean-Zn and hierarchical anode based on metal-organic framework(MOF)-derived carbon,where trace Zn^(0) is pre-reserved within the anode structure to make up for any irreversible zinc source loss.This allows us to construct low N/P ratio Zn^(0) full cells when coupling the lean-Zn anode with Zn-containing cathodes.Impressively,high Zn^(0) reversibility(average Coulombic efficiency of 99.4% for 3000 cycles)and long full-cell lifetime(92% capacity retention after 900 cycles)were realized even under the harsh lean-Zn condition(N/P ratio:1.34).The excellent Zn reversibility is attributed to the hierarchy structure that homogenizes zinc ion flux and electric field distribution,as confirmed by theoretical simulations,which therefore stabilizes Zn^(0) evolution.The lean-Zn anode design strategy will provide new insights into construction of high-energy Zn^(0) batteries for practical applications.展开更多
Alkali metals(Li,Na,and K)are promising candidates for high-performance rechargeable alkali metal battery anodes due to their high theoretical specific capacity and low electrochemical potential.However,the actual app...Alkali metals(Li,Na,and K)are promising candidates for high-performance rechargeable alkali metal battery anodes due to their high theoretical specific capacity and low electrochemical potential.However,the actual application of alkali metal anodes is impeded by the challenges of alkali metals,including their high chemical reactivity,uncontrolled dendrite growth,unstable solid electrolyte interphase,and infinite volume expansion during cycling processes.Introducing carbon nanotube-based nanomaterials in alkali metal anodesis an effective solution to these issues.These nanomaterials have attracted widespread attention owing to their unique properties,such as their high specific surface area,superior electronic conductivity,and excellent mechanical stability.Considering the rapidly growing research enthusiasm for this topic in the last several years,we review recent progress on the application of carbon nanotube-based nanomaterials in stable and dendrite-free alkali metal anodes.The merits and issues of alkali metal anodes,as well as their stabilizing strategies are summarized.Furthermore,the relationships among methods of synthesis,nano-or microstructures,and electrochemical properties of carbon nanotube-based alkali metal anodes are systematically discussed.In addition,advanced characterization technologies on the reaction mechanism of carbon nanotube-based nanomaterials in alkali metal anodes are also reviewed.Finally,the challenges and prospects for future study and applications of carbon nanotube-based AMAs in high-performance alkali metal batteries are discussed.展开更多
The resourceful and inexpensive red phosphorus has emerged as a promising anode material of potassium-ion batteries(PIBs) for its large theoretical capacities and low redox potentials in the multielectron alloying/dea...The resourceful and inexpensive red phosphorus has emerged as a promising anode material of potassium-ion batteries(PIBs) for its large theoretical capacities and low redox potentials in the multielectron alloying/dealloying reactions,yet chronically suffering from the huge volume expansion/shrinkage with a sluggish reaction kinetics and an unsatisfactory interfacial stability against volatile electrolytes.Herein,we systematically developed a series of localized high-concentration electrolytes(LHCE) through diluting high-concentration ether electrolytes with a non-solvating fluorinated ether to regulate the formation/evolution of solid electrolyte interphases(SEI) on phosphorus/carbon(P/C) anodes for PIBs.Benefitting from the improved mechanical strength and structural stability of a robust/uniform SEI thin layer derived from a composition-optimized LHCE featured with a unique solvation structure and a superior K+migration capability,the P/C anode with noticeable pseudocapacitive behaviors could achieve a large reversible capacity of 760 mA h g^(-1)at 100 mA g^(-1),a remarkable capacity retention rate of 92.6% over 200 cycles at 800 mA g^(-1),and an exceptional rate capability of 334 mA h g^(-1)at8000 mA g^(-1).Critically,a suppressed reduction of ether solvents with a preferential decomposition of potassium salts in anion-derived interfacial reactions on P/C anode for LHCE could enable a rational construction of an outer organic-rich and inner inorganic-dominant SEI thin film with remarkable mechanical strength/flexibility to buffer huge volume variations and abundant K+diffusion channels to accelerate reaction kinetics.Additionally,the highly reversible/durable full PIBs coupling P/C anodes with annealed organic cathodes further verified an excellent practical applicability of LHCE.This encouraging work on electrolytes regulating SEI formation/evolution would advance the development of P/C anodes for high-performance PIBs.展开更多
Transition metal oxides are regarded as promising candidates of anode for next-generation lithium-ion batteries(LIBs)due to their ultrahigh theoretical capacity and low cost,but are restricted by their low conductivit...Transition metal oxides are regarded as promising candidates of anode for next-generation lithium-ion batteries(LIBs)due to their ultrahigh theoretical capacity and low cost,but are restricted by their low conductivity and large volume expansion during Li^(+)intercalation.Herein,we designed and constructed a structurally integrated 3D carbon tube(3D-CT)grid film with Mn_(3)O_(4)nanoparticles(Mn_(3)O_(4)-NPs)and carbon nanotubes(CNTs)filled in the inner cavity of CTs(denoted as Mn_(3)O_(4)-NPs/CNTs@3D-CT)as high-performance free-standing anode for LIBs.The Mn_(3)O_(4)-NPs/CNTs@3D-CT grid with Mn_(3)O_(4)-NPs filled in the inner cavity of 3D-CT not only afford sufficient space to overcome the damage caused by the volume expansion of Mn_(3)O_(4)-NPs during charge and discharge processes,but also achieves highly efficient channels for the fast transport of both electrons and Li+during cycling,thus offering outstanding electrochemical performance(865 mAh g^(-1)at 1 A g^(-1)after 300 cycles)and excellent rate capability(418 mAh g^(-1)at 4 A g^(-1))based on the total mass of electrode.The unique 3D-CT framework structure would open up a new route to the highly stable,high-capacity,and excellent cycle and high-rate performance free-standing electrodes for highperformance Li-ion storage.展开更多
The carbon-coated ZnO nanospheres materials have been synthesized via a simple hydrothermal method.The effect of carbon content on the microstructure,morphology and electrochemical performance of the materials was inv...The carbon-coated ZnO nanospheres materials have been synthesized via a simple hydrothermal method.The effect of carbon content on the microstructure,morphology and electrochemical performance of the materials was investigated by XRD,Raman spectroscopy,transmission electron microscopy,scanning electron microscopy and electrochemical techniques.Research results show that the spherical ZnO/C material with a carbon cladding content of 10%is very homogeneous and approximately 200 nm in size.The electrochemical performances of the ZnO/C nanospheres as an anode materials are examines.The ZnO/C exhibits better stability than pure ZnO,excellent lithium storage properties as well as improved circulation performance.The Coulomb efficiency of the ZnO/C with 10%carbon coated content reaches 98%.The improvement of electrochemical performance can be attributed to the carbon layer on the ZnO surface.The large volume change of ZnO during the charge-discharge process can be effectively relieved.展开更多
Silicon(Si)is a potential high-capacity anode material for the next-generation lithium-ion battery with high energy density.However,Si anodes suff er from severe interfacial chemistry issues,such as side reactions at ...Silicon(Si)is a potential high-capacity anode material for the next-generation lithium-ion battery with high energy density.However,Si anodes suff er from severe interfacial chemistry issues,such as side reactions at the electrode/electrolyte interface,leading to poor electrochemical cycling stability.Herein,we demonstrate the fabrication of a conformal fl uorine-containing carbon(FC)layer on Si particles(Si-FC)and its in situ electrochemical conversion into a LiF-rich carbon layer above 1.5 V(vs.Li^(+)/Li).The as-formed LiF-rich carbon layer not only isolates the active Si and electrolytes,leading to the suppression of side reactions,but also induces the formation of a robust solid-electrolyte interface(SEI),leading to the stable interfacial chemistry of as-designed Si-FC particles.The Si-FC electrode has a high initial Coulombic effi ciency(CE)of 84.8%and a high reversible capacity of 1450 mAh/g at 0.4 C(1000 mA/g)for 300 cycles.In addition,a hybrid electrode consisting of 85 wt%graphite and 15 wt%Si-FC,and mass 2.3 mg/cm^(2) loading delivers a high areal capacity of 2.0 mAh/cm^(2) and a high-capacity retention of 93.2%after 100 cycles,showing the prospects for practical use.展开更多
基金supported by the Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education(NRF-2019R1A2C1084836 and NRF-2021R1A4A2001403)supported by 2018 Research Grant(PoINT)from Kangwon National University。
文摘Bifunctional hybrid anodes(BHAs),which are both a high-performance active host material for lithium-ion storage as well as a guiding agent for homogeneous lithium metal nucleation and growth,exhibit significant potential as anodes for next-generation high-energy-density lithium-ion batteries(LIBs).In this study,sulfur-doped hard carbon nanosphere assemblies(S-HCNAs)were prepared through a hydrothermal treatment of a liquid organic precursor,followed by high-temperature thermal annealing with elemental sulfur for application as BHAs for LIBs.In a carbonate-based electrolyte containing fluoroethylene carbonate additive,the S-HCNAs showed high lithium-ion storage capacities in sloping as well as plateau voltage sections,good rate capabilities,and stable cyclabilities.In addition,high average Coulombic efficiencies(CEs)of~96.9%were achieved for dual lithium-ion and lithium metal storage cycles.In the LIB full-cell tests with typical NCM811 cathodes,the S-HCNA-based BHAs containing~400 mA h g^(−1) of excess lithium led to high energy and power densities of~500Wh kg^(−1) and~1695Wkg^(−1),respectively,and a stable cycling performance with~100%CEs was achieved.
基金supported by the China Petrochemical Corporation(222260).
文摘Metallic lithium(Li)is considered the“Holy Grail”anode material for the nextgeneration of Li batteries with high energy density owing to the extraordinary theoretical specific capacity and the lowest negative electrochemical potential.However,owing to inhomogeneous Li-ion flux,Li anodes undergo uncontrollable Li deposition,leading to limited power output and practical applications.Carbon materials and their composites with controllable structures and properties have received extensive attention to guide the homogeneous growth of Li to achieve high-performance Li anodes.In this review,the correlation between the behavior of Li anode and the properties of carbon materials is proposed.Subsequently,we review emerging strategies for rationally designing high-performance Li anodes with carbon materials,including interface engineering(stabilizing solid electrolyte interphase layer and other functionalized interfacial layer)and architecture design of host carbon(constructing three-dimension structure,preparing hollow structure,introducing lithiophilic sites,optimizing geometric effects,and compositing with Li).Based on the insights,some prospects on critical challenges and possible future research directions in this field are concluded.It is anticipated that further innovative works on the fundamental chemistry and theoretical research of Li anodes are needed.
基金supported by the National Natural Science Foundation of China(Nos.52031008,51874211,21673162,51325102,U22B2071)the International Science and Technology Cooperation Program of China(No.2015DFA90750)the China Postdoctoral Science Foundation(No.2020M682468)。
文摘The corrosion inhibition efficacy of titanate(CaTiO_(3))for carbon anodes in molten salts was investigated through various analytical techniques,including linear sweep voltammetry,X-ray diffraction,scanning electron microscopy,and energy dispersion spectroscopy.The results demonstrate that the addition of CaTiO_(3)corrosion inhibitor efficiently passivates the carbon anode and leads to the formation of a dense CaTiO_(3)layer during the electrolysis process in molten CaCl_(2)-CaO.Subsequently,the passivated carbon anode effectively undergoes the oxygen evolution reaction,with an optimal current density for passivation identified at 400 m A/cm~2.Comprehensive investigations,including CaTiO_(3)solubility tests in molten CaCl_(2)-CaO and numerical modeling of the stability of complex ionic structures,provide compelling evidence supporting“complexation-precipitation”passivation mechanism.This mechanism involves the initial formation of a complex containing TiO_(2)·nCaO by CaTiO_(3)and CaO,which subsequently decomposes to yield CaTiO_(3),firmly coating the surface of the carbon anode.In practical applications,the integration of CaTiO_(3)corrosion inhibitor with the carbon anode leads to the successful preparation of the FeCoNiCrMn high-entropy alloy without carbon contamination in the molten CaCl_(2)-Ca O.
基金the financial support from the Australian Research CouncilCentre for Materials Science,Queensland University of Technology。
文摘Tin disulfide(SnS_(2)),due to large interlayer spacing and high theoretical capacity,is regarded as a prospective anode material for lithium-ion batteries.Nevertheless,the poor electron conductivity of SnS_(2) and huge volumetric change during the lithiation/delithiation process lead to a rapid capacity decay of the battery,hindering its commercialization.To address these issues,herein,SnS_(2) is in-situ grown on the surface of carbon nanotubes(CNT)and then encapsulated with a layer of porous amorphous carbon(CNT/SnS_(2)@C)by simple solvothermal and further carbonization treatment.The synergistic effect of CNT and porous carbon layer not only enhances the electrical co nductivity of SnS_(2) but also limits the huge volumetric change to avoid the pulverization and detachment of SnS_(2).Density functional theo ry calculations show that CNT/SnS_(2)@C has high Li^(+)adsorption and lithium storage capacity achieving high reaction kinetics.Consequently,cells with the CNT/SnS_(2)@C anode exhibit a high lithium storage capacity of 837mAh/g after 100 cycles at 0.1 A/g and retaining a capacity of 529.8 mAh/g under 1.0 A/g after 1000 cycles.This study provides a fundamental understanding of the electrochemical processes and beneficial guidance to design high-performance SnS_(2)-based anodes for LIBs.
基金financially supported by the National Key Research and Development Program of China(2022YFB3803600)the Fundamental Research Funds for the Central Universities(30106200463 and CCNU22CJ017)+1 种基金the National Natural Science Foundation of China(U20A20246)the Graduate Education Innovation Grant from Central China Normal University,China(20210407032)。
文摘Zincophilic property and high electrical conductivity are both very important parameters to design novel Zn anode for aqueous Zn-ion batteries(AZIBs).However,single material is difficult to exhibit zincophilic property and high electrical conductivity at the same time.Herein,originating from theoretical calculation,a zincophilic particle regulation strategy is proposed to address these limitations and carbon coated Na_(3)V_(2)(PO_(4))_(3)is taken as an example to be a protective layer on zinc metal(NVPC@Zn).Na_(3)V_(2)(PO_(4))_(3)(NVP)is a common cathode material for Zn-ion batteries,which is zincophilic.Carbon materials not only offer an electron pathway to help Zn deposition onto NVPC surface,but also enhance the zinc nucleophilicity of Na_(3)V_(2)(PO_(4))_(3).Hence,this hybrid coating layer can tune zinc deposition and resist side reactions such as hydrogen generation and Zn metal corrosion.Experimentally,a symmetrical battery with NVPC@Zn electrode displays highly reversible plating/stripping behavior with a long cycle lifespan over 1800 h at2 mA cm^(-2),much better than carbon and Na_(3)V_(2)(PO_(4))_(3)solely modified Zn electrodes.When the Na_(3)V_(2)(PO_(4))_(3)is replaced with zincophobic Al2O3or zincophilic V2O3,the stability of the modified zinc anodes is also prolonged.This strategy expands the option of zincophilic materials and provides a general and effective way to stabilize the Zn electrode.
基金supported by the National Natural Science Foundation of China (Grant Nos.21573109,21206069)the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).
文摘Cobalt sulphides attract much attention as anode materials for Li-ion batteries(LIBs).However,its poor conductivity,low initial column efficiency and large volume changes during cycling have hindered its further development.Herein,novel interlaced CoS nanosheets were firstly prepared on Carbon Fiber Cloth(CFC)by two hydrothermal reactions followed with carbon coating via carbonizing dopamine(CoS NS@C/CFC).As a freestanding anode,the nanosheet structure of CoS not only accommodates the volume variation,but also provides a large interface area to proceed the charge transfer reaction.In addition,CFC works as both a three-dimensional skeleton and an active substance which can further improve the areal capacity of the resulting electrode.Furthermore,the coated carbon combined with the CFC work as a 3D conductive network to facilitate the electron conduction.The obtained CoS NS@C/CFC,and the contrast sample prepared with the same procedure but without carbon coating(CoS NS/CFC),are characterized with XRD,SEM,TEM,XPS and electrochemical measurements.The results show that the CoS NS@C/CFC possesses much improved electrochemical performance due to the synergistic effect of nanosheet CoS,the coated carbon and the CFC substrate,exhibiting high initial columbic efficiency(~87%),high areal capacity(2.5 at 0.15 mA cm−2),excellent rate performance(1.6 at 2.73 mA cm−2)and improved cycle stability(87.5%capacity retention after 300 cycles).This work may provide a new route to explore freestanding anodes with high areal specific capacity for LIBs.
基金Financial support from the National Natural Science Foundation of China (22075320)。
文摘To achieve high energy density in lithium batteries,the construction of lithium-ion/metal hybrid anodes is a promising strategy.In particular,because of the anisotropy of graphite,hybrid anode formed by graphite/Li metal has low transport kinetics and is easy to causes the growth of lithium dendrites and accumulation of dead Li,which seriously affects the cycle life of batteries and even causes safety problems.Here,by comparing graphite with two types of hard carbon,it was found that hybrid anode formed by hard carbon and lithium metal,possessing more disordered mesoporous structure and lithophilic groups,presents better performance.Results indicate that the mesoporous structure provides abundant active site and storage space for dead lithium.With the synergistic effect of this structure and lithophilic functional groups(–COOH),the reversibility of hard carbon/lithium metal hybrid anode is maintained,promoting uniform deposition of lithium metal and alleviating formation of lithium dendrites.The hybrid anode maintains a 99.5%Coulombic efficiency(CE)after 260 cycles at a specific capacity of 500 m Ah/g.This work provides new insights into the hybrid anodes formed by carbon-based materials and lithium metal with high specific energy and fast charging ability.
基金financially supported by the National Natural Science Foundation of China (Grants 21975069 and 21872045)the Key Project of Research and Development Plan of Hunan Province (Grant 2019SK2071)。
文摘Carbonaceous materials are regarded as a promising anode material for potassium ion batteries(PIBs)due to their high electronic conductivity, abundant resources and low cost. However, relatively low storage capacity and structural instability still hinder their practical application. Herein, high sulfur-doped hard carbon(SHC-3) with a sulfur up to 27.05 at% is synthesized from polystyrene and sulfur as precursors. As an anode for PIBs, the SHC-3 delivers a superb cycling stability and rate performance(298.1 mAh g^(-1)at 100 mA g^(-1) for 1000 cycles, a capacity retention of 95.2%;220.2 mAh g^(-1)at 500 mA g^(-1) after 5200 cycles). The potassium storage of SHC-3 exhibits excellent cyclic stability at both low and high rates.Structure and kinetic studies demonstrate that the larger interlayer spacing(0.382 nm) of the SHC-3 accelerates the diffusion of potassium ions and effectively alleviates the volume expansion, and thus maintains the structure stability during the process of potassization/de-potassization. Meanwhile, the density functional theory calculation shows that the doped sulfur atoms provide abundant active sites for the adsorption of potassium ions, thereby increasing the reversible capacity of PIBs. This work provides a new scheme for the design of carbonaceous anode materials with high capacity and long cycle life.
基金supported by the National Natural Science Foundation of China(5197219862133007)the Taishan Scholars Program of Shandong Province(tsqn201812002,ts20190908)+1 种基金the Shenzhen Fundamental Research Program(JCYJ20190807093405503)The Natural Science Foundation of Shandong Province(No.ZR2020JQ19)。
文摘Silicon(Si)has been studied as a promising alloying type anode for lithium-ion batteries due to its high specific capacity,low operating potential and abundant resources.Nevertheless,huge volume expansion during alloying/dealloying processes and low electronic conductivity of Si anodes restrict their electrochemical performance.Thus,carbon(C)materials with special physical and chemical properties are applied in Si anodes to effectively solve these problems.This review focuses on current status in the exploration of Si/C anodes,including the lithiation mechanism and solid electrolyte interface formation,various carbon sources in Si/C anodes,such as traditional carbon sources(graphite,pitch,biomass),and novel carbon sources(MXene,graphene,MOFs-derived carbon,graphdiyne,etc.),as well as interfacial bonding modes of Si and C in the Si/C anodes.Finally,we summarize and prospect the selection of carbonaceous materials,structural design and interface control of Si/C anodes,and application of Si/C anodes in all-solid-state lithium-ion batteries and sodium-ion batteries et al.This review will help researchers in the design of novel Si/C anodes for rechargeable batteries.
文摘Recent technological advancements,such as portable electronics and electric vehicles,have created a pressing need for more efficient energy storage solutions.Lithium-ion batteries(LIBs)have been the preferred choice for these applications,with graphite being the standard anode material due to its stability.However,graphite falls short of meeting the growing demand for higher energy density,possessing a theoretical capacity that lags behind.To address this,researchers are actively seeking alternative materials to replace graphite in commercial batteries.One promising avenue involves lithiumalloying materials like silicon and phosphorus,which offer high theoretical capacities.Carbon-silicon composites have emerged as a viable option,showing improved capacity and performance over traditional graphite or pure silicon anodes.Yet,the existing methods for synthesizing these composites remain complex,energy-intensive,and costly,preventing widespread adoption.A groundbreaking approach is presented here:the use of a laser writing strategy to rapidly transform common organic carbon precursors and silicon blends into efficient“graphenic silicon”composite thin films.These films exhibit exceptional structural and energy storage properties.The resulting three-dimensional porous composite anodes showcase impressive attributes,including ultrahigh silicon content,remarkable cyclic stability(over 4500 cycles with∼40%retention),rapid charging rates(up to 10 A g^(-1)),substantial areal capacity(>5.1 mAh cm^(-2)),and excellent gravimetric capacity(>2400 mAh g^(-1) at 0.2 A g^(-1)).This strategy marks a significant step toward the scalable production of high-performance LIB materials.Leveraging widely available,cost-effective precursors,the laser-printed“graphenic silicon”composites demonstrate unparalleled performance,potentially streamlining anode production while maintaining exceptional capabilities.This innovation not only paves the way for advanced LIBs but also sets a precedent for transforming various materials into high-performing electrodes,promising reduced complexity and cost in battery production.
基金supported by the National Natural Science Foundation of China(Grant No.52173091 and 52102300)the Program for Leading Talents of National Ethnic Affairs Commission of China(MZR21001)the Hubei Provincial Natural Science Foundation of China(2021CFA022).
文摘Covalent organic frameworks(COFs)after undergoing the superlithiation process promise high-capacity anodes while suffering from sluggish reaction kinetics and low electrochemical utilization of redox-active sites.Herein,integrating carbon nanotubes(CNTs)with imine-linked covalent organic frameworks(COFs)was rationally executed by in-situ Schiff-base condensation between 1,1′-biphenyl]-3,3′,5,5′-tetracarbaldehyde and 1,4-diaminobenzene in the presence of CNTs to produce core–shell heterostructured composites(CNT@COF).Accordingly,the redox-active shell of COF nanoparticles around one-dimensional conductive CNTs synergistically creates robust three-dimensional hybrid architectures with high specific surface area,thus promoting electron transport and affording abundant active functional groups accessible for electrochemical utilization throughout the whole electrode.Remarkably,upon the full activation with a superlithiation process,the as-fabricated CNT@COF anode achieves a specific capacity of 2324 mAh g^(−1),which is the highest specific capacity among organic electrode materials reported so far.Meanwhile,the superior rate capability and excellent cycling stability are also obtained.The redox reaction mechanisms for the COF moiety were further revealed by Fourier-transform infrared spectroscopy in conjunction with X-ray photoelectron spectroscopy,involving the reversible redox reactions between lithium ions and C=N groups and gradual electrochemical activation of the unsaturated C=C bonds within COFs.
基金National Natural Science Foundation of China,Grant/Award Numbers:51874362,51932011,52002407Scientific Research Project of Hunan Provincial Department of Education,Grant/Award Number:21B0815。
文摘Hard carbons are promising anode materials for sodium-ion batteries.To meet practical requirements,searching for durable and conductive carbon with a stable interface is of great importance.Here,we prepare a series of vanadiummodified hard carbon submicrospheres by using hydrothermal carbonization followed by high-temperature pyrolysis.Significantly,the introduction of vanadium can facilitate the nucleation and uniform growth of carbon spheres and generate abundant V-O-C interface bonds,thus optimizing the reaction kinetic.Meanwhile,the optimized hard carbon spheres modified by vanadium carbide,with sufficient pseudographitic domains,provide more active sites for Na ion migration and storage.As a result,the HC/VC-1300 electrode exhibits excellent Na storage performance,including a high capacity of 420 mAh g^(-1) at 50mA g^(-1) and good rate capability at 1 A g^(-1).This study proposes a new strategy for the synthesis of hard carbon spheres with high tap density and emphasizes the key role of pseudographitic structure for Na storage and interface stabilization.
基金financially supported by the National Natural Science Foundation of China(21975069 and 21872045)the Key Project of Research and Development Plan of Hunan Province(2019SK2071)+1 种基金the Natural Science Foundation of Hunan Province,China(2020JJ4169)the State Key Laboratory of Heavy Oil Processing,China University of Petroleum,Development and Reform Commission of Hunan Province。
文摘Carbonaceous materials are considered as ideal anode for potassium ion batteries(PIBs)due to their abundant resources and stable physical and chemical properties.However,improvements of reversible capacity and cycle performance are still needed,aiming to the practical application.Herein,S/N/O tridoped carbon(SNOC)nanospheres are prepared by in-situ vulcanized polybenzoxazine.The S/N/O tridoped carbon matrix provides abundant active sites for potassium ion adsorption and effectively improves potassium storage capacity.Moreover,the SNOC nanospheres possess large carbon interlayer spacing and high specific surface area,which broaden the diffusion pathway of potassium ions and accelerate the electron transfer speed,resulting in excellent rate performance.As an anode for PIBs,SNOC shows attractive rate performance(438.5 mA h g^(-1) at 50 mA g^(-1) and 174.5 mA h g^(-1) at2000 mA g^(-1)),ultra-high reversible capacity(397.4 mA h g^(-1) at 100 mA g^(-1) after 700 cycles)and ultra-long cycling life(218.9 mA h g^(-1) at 2000 mA g^(-1) after 7300 cycles,123.1 mA h g^(-1) at3000 mA g^(-1) after 16500 cycles and full cell runs for 4000 cycles).Density functional theory calculation confirms that S/N/O tri-doping enhances the adsorption and diffusion of potassium ions,and in-situ Fourier-transform infrared explores explored the potassium storage mechanism of SNOC.
基金supported by the National Key R&D Program of China(2018YFE0201701 and 2018YFA0209401)the National Natural Science Foundation of China(Grant nos.22088101,U21A20329,21733003 and 21975050)+1 种基金the Science and Technology Commission of Shanghai Municipality(19JC1410700)Program of Shanghai Academic Research Leader(21XD1420800)。
文摘Initial Coulombic efficiency(ICE)has been widely adopted in battery research as a quantifiable indicator for the lifespan,energy density and rate performance of batteries.Hard carbon materials have been accepted as a promising anode family for sodium-ion batteries(SIBs)owing to their outstanding performance.However,the booming application of hard carbon anodes has been significantly slowed by the low ICE,leading to a reduced energy density at the cell level.This offers a challenge to develop high ICE hard carbon anodes to meet the applications of high-performance SIBs.Here,we discuss the definition and factors of ICE and describe several typical strategies to improve the ICE of hard carbon anodes.The strategies for boosting the ICE of such anodes are also systematically categorized into several aspects including structure design,surface engineering,electrolyte optimization and pre-sodiation.The key challenges and perspectives in the development of high ICE hard carbon anodes are also outlined.
基金State Key Laboratory of Heavy Oil Processing,Grant/Award Number:SKLHOP202101006National Natural Science Foundation of China,Grant/Award Numbers:21905304,52073305Natural Science Foundation of Shandong Province,Grant/Award Number:ZR2020QE048。
文摘Improving zinc metal(Zn^(0))reversibility and minimizing the N/P ratio are critical to boosting the energy density of Zn^(0) batteries.However,in reality,an excess Zn source is usually adopted to offset the irreversible zinc loss and guarantee sufficient zinc cycling,which sacrifices the energy density and leads to poor practicability of Zn^(0) batteries.To address the above conundrum,here,we report a lean-Zn and hierarchical anode based on metal-organic framework(MOF)-derived carbon,where trace Zn^(0) is pre-reserved within the anode structure to make up for any irreversible zinc source loss.This allows us to construct low N/P ratio Zn^(0) full cells when coupling the lean-Zn anode with Zn-containing cathodes.Impressively,high Zn^(0) reversibility(average Coulombic efficiency of 99.4% for 3000 cycles)and long full-cell lifetime(92% capacity retention after 900 cycles)were realized even under the harsh lean-Zn condition(N/P ratio:1.34).The excellent Zn reversibility is attributed to the hierarchy structure that homogenizes zinc ion flux and electric field distribution,as confirmed by theoretical simulations,which therefore stabilizes Zn^(0) evolution.The lean-Zn anode design strategy will provide new insights into construction of high-energy Zn^(0) batteries for practical applications.
基金supported by the National Key Research and Development Program of China(2020YFB1713500)the Chinese 02 Special Fund(2017ZX02408003)+1 种基金Open Fund of State Key Laboratory of Advanced Refractories(SKLAR202210)the Foundation of Department of Science and Technology of Henan Province(212102210219).
文摘Alkali metals(Li,Na,and K)are promising candidates for high-performance rechargeable alkali metal battery anodes due to their high theoretical specific capacity and low electrochemical potential.However,the actual application of alkali metal anodes is impeded by the challenges of alkali metals,including their high chemical reactivity,uncontrolled dendrite growth,unstable solid electrolyte interphase,and infinite volume expansion during cycling processes.Introducing carbon nanotube-based nanomaterials in alkali metal anodesis an effective solution to these issues.These nanomaterials have attracted widespread attention owing to their unique properties,such as their high specific surface area,superior electronic conductivity,and excellent mechanical stability.Considering the rapidly growing research enthusiasm for this topic in the last several years,we review recent progress on the application of carbon nanotube-based nanomaterials in stable and dendrite-free alkali metal anodes.The merits and issues of alkali metal anodes,as well as their stabilizing strategies are summarized.Furthermore,the relationships among methods of synthesis,nano-or microstructures,and electrochemical properties of carbon nanotube-based alkali metal anodes are systematically discussed.In addition,advanced characterization technologies on the reaction mechanism of carbon nanotube-based nanomaterials in alkali metal anodes are also reviewed.Finally,the challenges and prospects for future study and applications of carbon nanotube-based AMAs in high-performance alkali metal batteries are discussed.
基金supported by the National Key Research and Development Program of China(2021YFB2400200)the National Natural Science Foundation of China(52104313,22172117,52072298)the Scientific Research Program of Shaanxi Provincial Education Department(21JK0808)。
文摘The resourceful and inexpensive red phosphorus has emerged as a promising anode material of potassium-ion batteries(PIBs) for its large theoretical capacities and low redox potentials in the multielectron alloying/dealloying reactions,yet chronically suffering from the huge volume expansion/shrinkage with a sluggish reaction kinetics and an unsatisfactory interfacial stability against volatile electrolytes.Herein,we systematically developed a series of localized high-concentration electrolytes(LHCE) through diluting high-concentration ether electrolytes with a non-solvating fluorinated ether to regulate the formation/evolution of solid electrolyte interphases(SEI) on phosphorus/carbon(P/C) anodes for PIBs.Benefitting from the improved mechanical strength and structural stability of a robust/uniform SEI thin layer derived from a composition-optimized LHCE featured with a unique solvation structure and a superior K+migration capability,the P/C anode with noticeable pseudocapacitive behaviors could achieve a large reversible capacity of 760 mA h g^(-1)at 100 mA g^(-1),a remarkable capacity retention rate of 92.6% over 200 cycles at 800 mA g^(-1),and an exceptional rate capability of 334 mA h g^(-1)at8000 mA g^(-1).Critically,a suppressed reduction of ether solvents with a preferential decomposition of potassium salts in anion-derived interfacial reactions on P/C anode for LHCE could enable a rational construction of an outer organic-rich and inner inorganic-dominant SEI thin film with remarkable mechanical strength/flexibility to buffer huge volume variations and abundant K+diffusion channels to accelerate reaction kinetics.Additionally,the highly reversible/durable full PIBs coupling P/C anodes with annealed organic cathodes further verified an excellent practical applicability of LHCE.This encouraging work on electrolytes regulating SEI formation/evolution would advance the development of P/C anodes for high-performance PIBs.
基金supported by the Natural Science Foundation of China(91963202 and 52072372)the Key Research Program of Frontier Sciences(CAS,Grant,QYZDJ-SSW-SLH046)the CAS/SAFEA International Partnership Program for Creative Research Teams,and the Hefei Institutes of Physical Science,Chinese Academy of Sciences Director’s Fund(YZJ ZX202018)
文摘Transition metal oxides are regarded as promising candidates of anode for next-generation lithium-ion batteries(LIBs)due to their ultrahigh theoretical capacity and low cost,but are restricted by their low conductivity and large volume expansion during Li^(+)intercalation.Herein,we designed and constructed a structurally integrated 3D carbon tube(3D-CT)grid film with Mn_(3)O_(4)nanoparticles(Mn_(3)O_(4)-NPs)and carbon nanotubes(CNTs)filled in the inner cavity of CTs(denoted as Mn_(3)O_(4)-NPs/CNTs@3D-CT)as high-performance free-standing anode for LIBs.The Mn_(3)O_(4)-NPs/CNTs@3D-CT grid with Mn_(3)O_(4)-NPs filled in the inner cavity of 3D-CT not only afford sufficient space to overcome the damage caused by the volume expansion of Mn_(3)O_(4)-NPs during charge and discharge processes,but also achieves highly efficient channels for the fast transport of both electrons and Li+during cycling,thus offering outstanding electrochemical performance(865 mAh g^(-1)at 1 A g^(-1)after 300 cycles)and excellent rate capability(418 mAh g^(-1)at 4 A g^(-1))based on the total mass of electrode.The unique 3D-CT framework structure would open up a new route to the highly stable,high-capacity,and excellent cycle and high-rate performance free-standing electrodes for highperformance Li-ion storage.
基金Funded by the Key Research Projects in Gansu Province(No.17YF1GA020)。
文摘The carbon-coated ZnO nanospheres materials have been synthesized via a simple hydrothermal method.The effect of carbon content on the microstructure,morphology and electrochemical performance of the materials was investigated by XRD,Raman spectroscopy,transmission electron microscopy,scanning electron microscopy and electrochemical techniques.Research results show that the spherical ZnO/C material with a carbon cladding content of 10%is very homogeneous and approximately 200 nm in size.The electrochemical performances of the ZnO/C nanospheres as an anode materials are examines.The ZnO/C exhibits better stability than pure ZnO,excellent lithium storage properties as well as improved circulation performance.The Coulomb efficiency of the ZnO/C with 10%carbon coated content reaches 98%.The improvement of electrochemical performance can be attributed to the carbon layer on the ZnO surface.The large volume change of ZnO during the charge-discharge process can be effectively relieved.
基金supported by the Innovation Fund of Wuhan National Laboratory for Optoelectronics of Huazhong University of Science and Technology.
文摘Silicon(Si)is a potential high-capacity anode material for the next-generation lithium-ion battery with high energy density.However,Si anodes suff er from severe interfacial chemistry issues,such as side reactions at the electrode/electrolyte interface,leading to poor electrochemical cycling stability.Herein,we demonstrate the fabrication of a conformal fl uorine-containing carbon(FC)layer on Si particles(Si-FC)and its in situ electrochemical conversion into a LiF-rich carbon layer above 1.5 V(vs.Li^(+)/Li).The as-formed LiF-rich carbon layer not only isolates the active Si and electrolytes,leading to the suppression of side reactions,but also induces the formation of a robust solid-electrolyte interface(SEI),leading to the stable interfacial chemistry of as-designed Si-FC particles.The Si-FC electrode has a high initial Coulombic effi ciency(CE)of 84.8%and a high reversible capacity of 1450 mAh/g at 0.4 C(1000 mA/g)for 300 cycles.In addition,a hybrid electrode consisting of 85 wt%graphite and 15 wt%Si-FC,and mass 2.3 mg/cm^(2) loading delivers a high areal capacity of 2.0 mAh/cm^(2) and a high-capacity retention of 93.2%after 100 cycles,showing the prospects for practical use.