期刊文献+
共找到18,461篇文章
< 1 2 250 >
每页显示 20 50 100
Effect of cobalt and its adding sequence on the catalytic performance of MoO_3/Al_2O_3 toward sulfur-resistant methanation 被引量:5
1
作者 Baowei Wang Yuqin Yao +4 位作者 Minhong Jiang Zhenhua Li Xinbin Ma Shaodong Qin Qi Sun 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2014年第1期35-42,共8页
The effect of promoter cobalt and the sequences of adding cobalt and molybdenum precursors on the performance of sulfur-resistant methanation were investigated. All these samples were prepared by impregnation method a... The effect of promoter cobalt and the sequences of adding cobalt and molybdenum precursors on the performance of sulfur-resistant methanation were investigated. All these samples were prepared by impregnation method and characterized by N2-adsorption, X-ray diffraction(XRD), temperature-programmed reduction(TPR) and laser Raman spectroscopy(LRS). The conversions of CO for Mo-Co/Al, Co-Mo/Al and CoMo/Al catalysts were 59.7%, 54.3% and 53.9%, respectively. Among these catalysts, the Mo-Co/Al catalyst prepared stepwisely by impregnating Mo precursor firstly showed the best catalytic performance. Meanwhile, the conversions of CO were 48.9% for Mo/Al catalyst and 10.5% for Co/Al catalyst. The addition of cobalt species could improve the catalytic activity of Mo/Al catalyst. The N2-adsorption results showed that Co-Mo/Al catalyst had the smallest specific surface area among these catalysts. CoMoO4species in CoMo/Al catalyst were detected with XRD, TPR and LRS. Moreover, crystal MoS2which was reported to be less active than amorphous MoS2was found in both Co-Mo/Al and CoMo/Al catalysts. Mo-Co/Al catalyst showed the best catalytic performance as it had an appropriate surface structure, i.e., no crystal MoS2and very little CoMoO4species. 展开更多
关键词 promoter cobalt MOLYBDENUM impregnation sequence sulfur-resistant methanation synthetic natural gas
下载PDF
Effects of CeO2 preparation methods on the catalytic performance of MoO3/CeO2 toward sulfur-resistant methanation 被引量:1
2
作者 Dajun Meng Baowei Wang +3 位作者 Zhen Liu Weihan Wang Zhenhua Li Xinbin Ma 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2017年第3期368-372,共5页
CeOsupports were prepared by calcination or precipitation method and 5% MoO/CeOcatalysts were prepared by incipient-wetness impregnation method. The catalytic performance of the 5% MoO/CeOcatalysts toward sulfur-resis... CeOsupports were prepared by calcination or precipitation method and 5% MoO/CeOcatalysts were prepared by incipient-wetness impregnation method. The catalytic performance of the 5% MoO/CeOcatalysts toward sulfur-resistant methanation was investigated. The results showed that the Mo/Ce-1 catalysts with CeOsupport prepared by calcination method exhibited the best sulfur-resistant methanation activity and stability with CO conversion as high as 75% while the Mo/Ce-3 catalysts the poorest. The supports and catalysts were characterized by N-adsorption–desorption, temperature-programmed reduction(TPR), X-ray diffraction(XRD), Raman spectroscopy(RS) and scanning electron microscope(SEM). The results indicated that the saturated monolayer loading MoOon Ce-3 support was lower than 5% and there were some crystalline MoOparticles on the surface of the Mo/Ce-3. The preparation method of CeOhad a big influence on the specific surface area, the crystalline of CeO, and the catalytic performance of the corresponding Mo-based catalyst for sulfur-resistant methanation. 展开更多
关键词 CeO2 supports MOO3 sulfur-resistant methanation Synthetic natural gas
下载PDF
Sulfur-resistant methanation over MoO_3/CeO_2–ZrO_2 catalyst: Influence of Ce-addition methods 被引量:2
3
作者 Zhaopeng Liu Yan Xu +4 位作者 Zhenhua Li Baowei Wang Weihan Wang Xinbin Ma Renjie Liu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2019年第1期31-38,共8页
In this paper, Ce_(0.2)Zr_(0.8)O_2 composite supports were prepared by different Ce-addition methods including impregnation of cerium(CeZr-imp), impregnation of citric acid and cerium(CeZr-CA) simultaneously and depos... In this paper, Ce_(0.2)Zr_(0.8)O_2 composite supports were prepared by different Ce-addition methods including impregnation of cerium(CeZr-imp), impregnation of citric acid and cerium(CeZr-CA) simultaneously and deposition precipitation method(CeZr-DP), respectively. The as-prepared supports were applied to prepare 10 wt% MoO_3/Ce_(0.2)Zr_(0.8)O_2 catalysts for sulfur-resistant methanation. The N_2 adsorption/desorption,X-ray diffraction(XRD), Raman spectroscopy(RS), X-ray photoelectron(XPS), temperature-programmed reduction by hydrogen(H_2-TPR) were undertaken to get textural properties, morphological information and structures of the catalysts. The results showed that Mo O_3 was highly dispersed on the surface of these three supports and Ce was mostly of coexisted in Ce^(4+)/Ce^(3+) redox pairs. Compared with Mo/CeZrimp, the CO conversion increased by 10% and 15% for Mo/CeZr-CA and Mo/CeZr-DP, respectively. This was mainly attributed to the larger specific surface area, Ce^(3+) concentration and content of active MoS_2 on the surface of catalysts. 展开更多
关键词 sulfur-resistant methanation Ce introducing METHODS REDUCIBLE CE^3+ Synthetic natural gas Active MOS2
下载PDF
Optimization of Co-precipitation Condition for Preparing Molybdenum-Based Sulfur-Resistant Methanation Catalysts
4
作者 Jiahui Zhang Xiaoshan Zhang +2 位作者 Baowei Wang Zhenhua Li Xinbin Ma 《Transactions of Tianjin University》 EI CAS 2019年第5期504-516,共13页
In this study, the e ects of ZrO 2 carrier precursors, MoO 3 loading, and washing treatment on the catalytic performance of M o O 3 /ZrO 2 toward sulfur-resistant methanation were investigated. All the catalysts were ... In this study, the e ects of ZrO 2 carrier precursors, MoO 3 loading, and washing treatment on the catalytic performance of M o O 3 /ZrO 2 toward sulfur-resistant methanation were investigated. All the catalysts were prepared by co-precipitation method and further characterized by N 2 adsorption desorption, H 2 -temperature-programmed reduction, X-ray di raction, Raman spectroscopy and transmission electron microscopy. The prepared MoO 3 /ZrO 2 catalysts were tested in a continuous- ow pressurized xed bed reactor for CO methanation. The results revealed that the carrier precursors, MoO3 loading, and wash- ing treatment a ected not only the crystalline phase of Mo species but also the grain size of ZrO 2 carrier and consequently in uenced the MoO 3 /ZrO 2 activity toward sulfur-resistant methanation. The 25 wt% M oO 3 /ZrO 2 catalyst prepared using Zr(NO 3 ) 4 5H 2 O as the precursor and treated by water washing displayed the best activity for sulfur-resistant methanation due to its greater number of octahedral Mo species and smaller ZrO 2 grain size. 展开更多
关键词 sulfur-resistant methanation CO-PRECIPITATION MOLYBDENUM ZrO 2
下载PDF
Effect of boron addition on the MoO_3/CeO_2–Al_2O_3 catalyst in the sulfur-resistant methanation 被引量:2
5
作者 Baowei Wang Wenxia Yu +3 位作者 Weihan Wang Zhenhua Li Yan Xu Xinbin Ma 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2018年第3期509-513,共5页
The effect of boron on the performance of MoO_3/CeO_2–Al_2O_3 catalysts, which were prepared with impregnation method, was investigated. The catalysts were characterized with N_2 adsorption–desorption, XRD, H_2-TPR,... The effect of boron on the performance of MoO_3/CeO_2–Al_2O_3 catalysts, which were prepared with impregnation method, was investigated. The catalysts were characterized with N_2 adsorption–desorption, XRD, H_2-TPR, and NH_3-TPD, and were tested in sulfur-resistant methanation. The results indicated that the MoO_3/CeO_2–Al_2O_3 catalysts modified by boron showed higher catalytic performance in sulfur-resistant methanation. The CO conversion increased from 47% to 62% with 0.5 wt% boron content. When the content of boron was under 0.5 wt%, the results suggested there was an increase in the amorphous form of MoO_3 caused by the generation of weak and intermediate acid sites, which had weakened the interaction between the active components and supports. While, the catalyst added 2.0 wt% boron showed the strong acid sites and the largest crystalline size resulting in the uneven distribution of ceria. 展开更多
关键词 催化剂 NH3-TPD 解吸附作用 MOO3 相互作用 XRD
下载PDF
Optimizing the sulfur-resistance and activity of perovskite oxygen carrier for chemical looping dry reforming of methane
6
作者 Yuelun Li Dong Tian +6 位作者 Lei jiang Huicong Zuo LiNan Huang Mingyi Chen Jianchun Zuo Hua Wang Kongzhai Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第9期259-271,共13页
Perovskite oxides has been attracted much attention as high-performance oxygen carriers for chemical looping reforming of methane,but they are easily inactivated by the presence of trace H_(2)S.Here,we propose to modu... Perovskite oxides has been attracted much attention as high-performance oxygen carriers for chemical looping reforming of methane,but they are easily inactivated by the presence of trace H_(2)S.Here,we propose to modulate both the activity and resistance to sulfur poisoning by dual substitution of Mo and Ni ions with the Fe-sites of LaFeO_(3)perovskite.It is found that partial substitution of Ni for Fe substantially improves the activity of LaFeO_(3)perovskite,while Ni particles prefer to grow and react with H_(2)S during the long-term successive redox process,resulting in the deactivation of oxygen carriers.With the presence of Mo in LaNi_(0.05)Fe_(0.95)O_(3−σ)perovskite,H_(2)S preferentially reacts with Mo to generate MoS_(2),and then the CO_(2)oxidation can regenerate Mo via removing sulfur.In addition,Mo can inhibit the accumulation and growth of Ni,which helps to improve the redox stability of oxygen carriers.The LaNi_(0.05)Mo_(0.07)Fe_(0.88)O_(3−σ)oxygen carrier exhibits stable and excellent performance,with the CH_(4)conversion higher than 90%during the 50 redox cycles in the presence of 50 ppm H_(2)S at 800℃.This work highlights a synergistic effect in the perovskite oxides induced by dual substitution of different cations for the development of high-performance oxygen carriers with excellent sulfur tolerance. 展开更多
关键词 Perovskite oxygen carriers Chemical looping reforming sulfur-resistance Dual substitution SYNGAS
下载PDF
Zonal activation of molecular carbon dioxide and hydrogen over dual sites Ni-Co-MgO catalyst for CO_(2) methanation:Synergistic catalysis of Ni and Co species
7
作者 Zonglin Li Jianjun Chen +8 位作者 Yu Xie Junjie Wen Huiling Weng Mingxue Wang Jingyi Zhang Jinyan Cao Guocai Tian Qiulin Zhang Ping Ning 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第4期213-225,共13页
An in-depth mechanism in zonal activation of CO_(2)and H2molecular over dual-active sites has not been revealed yet.Here,Ni-Co-MgO was rationally constructed to elucidate the CO_(2)methanation mechanism.The abundant s... An in-depth mechanism in zonal activation of CO_(2)and H2molecular over dual-active sites has not been revealed yet.Here,Ni-Co-MgO was rationally constructed to elucidate the CO_(2)methanation mechanism.The abundant surface nickel and cobalt components as active sites led to strong Ni-Co interaction with charge transfer from nickel to cobalt.Notably,electron-enriched Coδ-species participated in efficient chemisorption and activation of CO_(2)to generate monodentate carbonate.Simultaneously,plentiful available Ni0sites facilitated H2dissociation,thus CO_(2)and H2were smoothly activated at zones of Coδ-species and Ni0,respectively.Detailed in situ DRIFTS,quasi situ XPS,TPSR,and DFT calculations substantiated a new formate evolution mechanism via monodentate carbonate instead of traditional bidentate carbonate based on synergistic catalysis of Coδ-species and Ni0.The zonal activation of CO_(2)and H2by tuning electron behaviors of double-center catalysts can boost heterogeneous catalytic hydrogenation performance. 展开更多
关键词 Zonal activation CO_(2) methanation Dual active sites Synergistic effect
下载PDF
CO_(2)methanation boosted by support-size-dependent strong metal-support interaction and B-O-Ti component
8
作者 Shaoyu Yuan Yushan Yang +5 位作者 Zhangyi Xiong Peijing Guo Sufang Sun Zejiang Li Jianlong Du Yongjun Gao 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第2期321-332,共12页
Strong metal-support interaction(SMSI)has a great impact on the activity and selectivity of heterogeneous catalysts,which was usually adjusted by changing reduction temperature or processing catalyst in different atmo... Strong metal-support interaction(SMSI)has a great impact on the activity and selectivity of heterogeneous catalysts,which was usually adjusted by changing reduction temperature or processing catalyst in different atmosphere.However,few researches concentrate on modulating SMSI through regulating the structure of the support.Herein,we show how changing the surface environment of the anatase TiO_(2)(B–TiO_(2))can be used to modulate the SMSI.The moderate TiOx overlayer makes the Ni metal highly dispersed on the high specific surface area of support,resulting in a substantially enhanced CO_(2)methanation rate.Besides,a novel phenomenon was observed that boron dopants promote the for-mation of the B–O–Ti interface site,enhancing the catalytic performance of CO_(2)hydrogenation.DFT calculations confirm that the B–O–Ti structure facilitates the activation of CO_(2)and further hydrogenation to methane. 展开更多
关键词 CO_(2)methanation B-doped TiO_(2) SMSI SIZE-DEPENDENT
下载PDF
Methanation of CO/CO_(2)for power to methane process:Fundamentals,status,and perspectives 被引量:1
9
作者 Jie Ren Hao Lou +3 位作者 Nuo Xu Feng Zeng Gang Pei Zhandong Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第5期182-206,I0005,共26页
Power-to-methane(P2M)processes,by converting electricity from renewable energy to H2and then into other high value-added and energy-intense chemicals in the presence of active catalysts,have become an effective soluti... Power-to-methane(P2M)processes,by converting electricity from renewable energy to H2and then into other high value-added and energy-intense chemicals in the presence of active catalysts,have become an effective solution for energy storage.However,the fluctuating electricity from intermittent renewable energy leads to a dynamic composition of reactants for downstream methanation,which requires an excellent heterogeneous catalyst to withstand the harsh conditions.Based on these findings,the objective of this review is to classify the fundamentals and status of CO/CO_(2)methanation and identify the pathways in the presence of various catalysts for methane production.In addition,this review sheds insight into the future development and challenges of CO_(2)or CO methanation,including the deactivation mechanisms and catalyst performance under dynamically harsh conditions.Finally,we elaborated on the advantages and development prospects of P2M,and then we summarized the current stage and ongoing industrialization projects of P2M. 展开更多
关键词 Power-to-methane CO methanation CO_(2)methanation Heterogeneous catalyst methanation mechanism
下载PDF
Depleted uranium oxide supported nickel catalyst for autothermal CO_(2)methanation in non-adiabatic reactor under induction heating 被引量:1
10
作者 Lai Truong-Phuoc Jean-Mario Nhut +7 位作者 Loïc Vidal Cuong Duong-Viet Sécou Sall Corinne Petit Christophe Sutter Mehdi Arab Alex Jourdan Cuong Pham-Huu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第10期310-323,I0010,共15页
Undoped nickel-based catalysts supported on depleted uranium oxide allow one to carry out CO_(2)methanation process under extremely low reaction temperature under atmospheric pressure and powered by a contactless indu... Undoped nickel-based catalysts supported on depleted uranium oxide allow one to carry out CO_(2)methanation process under extremely low reaction temperature under atmospheric pressure and powered by a contactless induction heating.By adjusting the reaction conditions,the catalyst is able to perform CO_(2)methanation reaction under autothermal process operated inside a non-adiabatic reactor,without any external energy supply.Such autothermal process is possible thanks to the high apparent density of the UO_x which allows one to confine the reaction heat in a small catalyst volume in order to confine the exothermicity of the reaction inside the catalyst and to operate the reaction at equilibrium heat in-heat out.Such autothermal operation mode allows one to significantly reduce the complexity of the process compared to that operated using adiabatic reactor,where complete insulation is required to prevent heat disequilibrium,in order to reduce as much as possible,the heat exchange with the external medium.The catalyst displays an extremely high stability as a function of time on stream as no apparent deactivation.It is expected that such new catalyst with unprecedented catalytic performance could open new era in the field of heterogeneous catalysis where traditional supports show their limitations to operate catalytic processes under severe reaction conditions. 展开更多
关键词 CO_(2)methanation Auto-methanation Induction heating Depleted uranium oxide Electrification process Operando DRIFTS
下载PDF
Promotional effects of Ru and Fe on Ni/ZrO_(2) catalyst during CO_(2) methanation:A comparative evaluation of the mechanism
11
作者 Jie Ren Feng Zeng +2 位作者 Chalachew Mebrahtu Zhandong Wang Regina Palkovits 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第11期351-361,I0008,共12页
Ni-based catalysts are widely investigated non-noble metal-based systems for CO_(2)methanation.However,their industrial application is still limited due to lower activity at low-temperature and catalyst deactivation.I... Ni-based catalysts are widely investigated non-noble metal-based systems for CO_(2)methanation.However,their industrial application is still limited due to lower activity at low-temperature and catalyst deactivation.Incorporating a second metal such as Ru and Fe is considered as a successful strategy to overcome these challenges through alloy formation or the synergies provided by the interplay of two adjacent metallic sites.Nonetheless,their promotional effect on the CO_(2)methanation mechanism under similar conditions has not been reported yet.In this work,Fe and Ru-promoted Ni/ZrO_(2)catalysts were investigated to evaluate their promotional effect on the mechanism.The Ni/Fe ratio was first optimized and a CO_(2)conversion rate of 37.7 mmolCO_(2)/(molNi+Fes)and 96.3%CH^(4)selectivity was obtained over the Ni_(0.8)Fe_(0.2)/ZrO_(2)catalyst.In comparison with Ni_(0.8)Fe_(0.2)/ZrO_(2),Ni_(0.8)Ru_(0.2)/ZrO_(2)prepared with the same composition showed higher activity and stability in CO_(2)methanation.Characterization results indicate alloys formation and H spillover for Ni_(0.8)Ru_(0.2)/ZrO_(2)to be responsible for promotion.Besides,in situ DRIFTS studies evidenced the occurrence of both CO_(2)dissociative and associative pathways over Ni_(0.8)Ru_(0.2)/ZrO_(2)catalyst,while solely the CO_(2)associative pathway occurred for Ni_(0.8)Fe_(0.2)/ZrO_(2) 展开更多
关键词 Ni-based catalyst Alloy formation H spillover CO_(2) methanation methanation mechanism
下载PDF
Three-Dimensional Simulation of Hydrodynamic Mechanism of Fluidized Bed Methanation
12
作者 Xiaojia Wang Danyang Shao +2 位作者 Delu Chen Yutong Gong Fengxia An 《Journal of Renewable Materials》 EI 2023年第7期3155-3175,共21页
Organic solid waste(OSW)contains many renewable materials.The pyrolysis and gasification of OSW can realize resource utilization,and its products can be used for methanation reaction to produce synthetic natural gas i... Organic solid waste(OSW)contains many renewable materials.The pyrolysis and gasification of OSW can realize resource utilization,and its products can be used for methanation reaction to produce synthetic natural gas in the specific reactor.In order to understand the dynamic characteristics of the reactor,a three-dimensional numerical model has been established by the method of Computational Fluid Dynamics(CFD).Along the height of the reactor,the particle distribution in the bed becomes thinner and the mean solid volume fraction decreases from 4.18%to 0.37%.Meanwhile,the pressure fluctuation range decreased from 398.76 Pa at the entrance to a much lower value of 74.47 Pa at the exit.In this simulation,three parameters of gas inlet velocity,operating temperature and solid particle diameter are changed to explore their influences on gas-solid multiphase flow.The results show that gas velocity has a great influence on particle distribution.When the gas inlet velocity decreases from 6.51 to 1.98 m/s,the minimum height that particles can reach decreases from 169 to 100 mm.Additionally,as the operating temperature increases,the particle holdup inside the reactor changes from 0.843%to 0.700%.This indicates that the particle residence time reduces,which is not conducive to the follow-up reaction.Moreover,with the increase of particle size,the fluctuation range of the pressure at the bottom of the reactor increases,and its standard deviation increases from 55.34 to 1266.37 Pa. 展开更多
关键词 Organic solid waste methanation reactor multiphase flow three-dimensional simulation
下载PDF
Spatio-Temporal Characteristics of Heat Transfer of Methanation in Fluidized Bed for Pyrolysis and Gasification Syngas of Organic Solid Waste
13
作者 Danyang Shao Xiaojia Wang +1 位作者 Delu Chen Fengxia An 《Journal of Renewable Materials》 EI 2023年第10期3659-3680,共22页
Methanation is an effective way to efficiently utilize product gas generated from the pyrolysis and gasification of organic solid wastes.To deeply study the heat transfer and mass transfer mechanisms in the reactor,a ... Methanation is an effective way to efficiently utilize product gas generated from the pyrolysis and gasification of organic solid wastes.To deeply study the heat transfer and mass transfer mechanisms in the reactor,a successful three-dimensional comprehensive model has been established.Multiphase flow behavior and heat transfer mechanisms were investigated under reference working conditions.Temperature is determined by the heat release of the reaction and the heat transfer of the gas-solid flow.The maximum temperature can reach 951 K where the catalyst gathers.In the simulation,changes in the gas inlet velocity and catalyst flow rate were made to explore their effects on CO conversion rate and temperature for optimization purposes.As the inlet gas velocity increases from 2.78 to 4.79 m/s,the CO conversion rate decreases from 81.6%to 72.4%.However,more heat is removed from the reactor,and the temperature rise increases from 78.03 to 113.49 K.When the catalyst flow rate is increased from 7.18 to 17.96 kg/(m^(2)·s),the mass of the catalyst in the reactor is increased from 0.0019 to 0.0042 kg,and the CO conversion rate is increased from 66.8%to 81.5%.However,this increases the maximum temperature in the reactor from 940.0 to 966.4 K. 展开更多
关键词 Organic solid waste methanation reactor multiphase flow three-dimensional simulation
下载PDF
Optimisation Strategy of Carbon Dioxide Methanation Technology Based on Microbial Electrolysis Cells
14
作者 Qifen Li Xiaoxiao Yan +2 位作者 Yongwen Yang Liting Zhang Yuanbo Hou 《Journal of Renewable Materials》 EI 2023年第7期3177-3191,共15页
Microbial Electrolytic Cell(MEC)is an electrochemical reaction device that uses electrical energy as an energy input and microorganisms as catalysts to produce fuels and chemicals.The regenerative electrochemical syst... Microbial Electrolytic Cell(MEC)is an electrochemical reaction device that uses electrical energy as an energy input and microorganisms as catalysts to produce fuels and chemicals.The regenerative electrochemical system is a MEC improvement system for methane gas produced by biological carbon sequestration technology using renewable energy sources to provide a voltage environment.In response to the influence of fluctuating disturbances of renewable electricity and the long system start-up time,this paper analyzes the characteristics of two strategies,regulating voltage parameter changes and activated sludge pretreatment,on the methane production efficiency of the renewable gas electrochemical system.In this system,the methane production rate of regenerative electrochemical system is increased by 1.4 times through intermittent boosting start-up strategy;based on intermittent boosting,the methane production rate of regenerative electrochemical system is increased by 2 times through sludge pyrolysis pretreatment start-up strategy,and the start-up time is reduced to 10 days.Meanwhile,according to the simulation test results of power input fluctuation and intermittency,the stability standard deviation of its system operation is 75%of the original one,and the recovery rate is about 1 times higher.This study can provide a theoretical basis and technical reference for the early industrial application of microbial CO_(2)methanation technology based on renewable energy. 展开更多
关键词 Carbon sequestration CO_(2)methanation gap boosting strategy sludge pretreatment strategy
下载PDF
Study on Biological Pathway of Carbon Dioxide Methanation Based on Microbial Electrolysis Cell
15
作者 Guanwen Ding Qifen Li +2 位作者 Liting Zhang Yuanbo Hou Xiaoxiao Yan 《Journal of Renewable Materials》 SCIE EI 2023年第1期197-207,共11页
Realization of CO_(2) resource utilization is the main development direction of CO_(2) reduction.The CO_(2) methana-tion technology based on microbial electrolysis cell(MEC)has the characteristics of ambient temperatu... Realization of CO_(2) resource utilization is the main development direction of CO_(2) reduction.The CO_(2) methana-tion technology based on microbial electrolysis cell(MEC)has the characteristics of ambient temperature and pressure,green and low-carbon,which meets the need of low-carbon energy transition.However,the lack of the system such as the change of applied voltage and the reactor amplification will affect the methane production efficiency.In this research,the efficiency of methane production with different applied voltages and different types of reactors was carried out.The results were concluded that the maximum methane production rate of the H-type two-chamber microbial electrolysis cells(MECs)at an applied voltage of 0.8 V was obtained to be 1.15 times higher than that of 0.5 V;under the same conditions of inoculated sludge,the reactor was amplified 2.5 times and the cumulative amount of methane production was 1.04 times higher than the original.This research can provide a theoretical basis and technical reference for the early industrial application of CO_(2) methanation tech-nology based on MEC. 展开更多
关键词 CO_(2)methanation microbial electrolysis cell(MEC) microbial electrolytic cell enlargement external voltage
下载PDF
Rumen microbial degradation of bromoform from red seaweed(Asparagopsis taxiformis)and the impact on rumen fermentation and methanogenic archaea
16
作者 Pedro Romero Alejandro Belanche +5 位作者 Elisabeth Jiménez Rafael Hueso Eva Ramos-Morales Joan King Salwen Ermias Kebreab David R.Yáñez-Ruiz 《Journal of Animal Science and Biotechnology》 SCIE CAS CSCD 2024年第1期412-426,共15页
Background The red macroalgae Asparagopsis is an effective methanogenesis inhibitor due to the presence of halogenated methane(CH_(4))analogues,primarily bromoform(CHBr_(3)).This study aimed to investigate the degrada... Background The red macroalgae Asparagopsis is an effective methanogenesis inhibitor due to the presence of halogenated methane(CH_(4))analogues,primarily bromoform(CHBr_(3)).This study aimed to investigate the degradation process of CHBr3 from A taxiformis in the rumen and whether this process is diet-dependent.An in vitro batch culture system was used according to a 2×2 factorial design,assessing two A taxiformis inclusion rates[0(CTL)and 2%DM diet(AT)]and two diets[high-concentrate(HC)and high-forage diet(HF)].Incubations lasted for 72 h and samples of headspace and fermentation liquid were taken at 0,0.5,1,3,6,8,12,16,24,48 and 72 h to assess the pattern of degradation of CHBr_(3) into dibromomethane(CH_(2)Br_(2))and fermentation parameters.Additionally,an in vitro experiment with pure cultures of seven methanogens strains(Methanobrevibacter smithii,Methanobrevibacter ruminantium,Methanosphaera stadtmanae,Methanosarcina barkeri,Methanobrevibacter millerae,Methanorhermobacter wolfei and Methanobacterium mobile)was conducted to test the effects of increasing concentrations of CHBr3(0.4,2,10and 50μmol/L).Results The addition of AT significantly decreased CH_(4) production(P=0.002)and the acetate:propionate ratio(P=0.003)during a 72-h incubation.The concentrations of CHBr_(3) showed a rapid decrease with nearly 90%degraded within the first 3 h of incubation.On the contrary,CH_(2)Br_(2) concentration quickly increased during the first 6 h and then gradually decreased towards the end of the incubation.Neither CHBr_(3) degradation nor CH_(2)Br_(2) synthesis were affected by the type of diet used as substrate,suggesting that the fermentation rate is not a driving factor involved in CHBr_(3)degradation.The in vitro culture of methanogens showed a dose-response effect of CHBr3 by inhibiting the growth of M.smithii,M.ruminantium,M.stadtmanae,M.barkeri,M.millerae,M.wolfei,and M.mobile.Conclusions The present work demonstrated that CHBr_(3) from A.taxiformis is quickly degraded to CH_(2)Br_(2)in the rumen and that the fermentation rate promoted by different diets is not a driving factor involved in CHBr_(3)degradation. 展开更多
关键词 Bromoform metabolism Dibromomethane metabolism methane mitigation methanOGENS Rumen microbiota SEAWEED
下载PDF
Screening the optimal Co_(x)/CeO_(2)(110)(x=1–6)catalyst for methane activation in coalbed gas
17
作者 Li’nan Huang Danyang Li +3 位作者 Lei Jiang Zhiqiang Li Dong Tian Kongzhai Li 《International Journal of Coal Science & Technology》 EI CAS CSCD 2024年第3期256-271,共16页
The challenges posed by energy and environmental issues have forced mankind to explore and utilize unconventional energy sources.It is imperative to convert the abundant coalbed gas(CBG)into high value-added products,... The challenges posed by energy and environmental issues have forced mankind to explore and utilize unconventional energy sources.It is imperative to convert the abundant coalbed gas(CBG)into high value-added products,i.e.,selective and efficient conversion of methane from CBG.Methane activation,known as the“holy grail”,poses a challenge to the design and development of catalysts.The structural complexity of the active metal on the carrier is of particular concern.In this work,we have studied the nucleation growth of small Co clusters(up to Co_(6))on the surface of CeO_(2)(110)using density functional theory,from which a stable loaded Co/CeO_(2)(110)structure was selected to investigate the methane activation mechanism.Despite the relatively small size of the selected Co clusters,the obtained Co_(x)/CeO_(2)(110)exhibits interesting properties.The optimized Co_(5)/CeO_(2)(110)structure was selected as the optimal structure to study the activation mechanism of methane due to its competitive electronic structure,adsorption energy and binding energy.The energy barriers for the stepwise dissociation of methane to form CH3^(*),CH2^(*),CH^(*),and C^(*)radical fragments are 0.44,0.55,0.31,and 1.20 eV,respectively,indicating that CH^(*)dissociative dehydrogenation is the rate-determining step for the system under investigation here.This fundamental study of metal-support interactions based on Co growth on the CeO_(2)(110)surface contributes to the understanding of the essence of Co/CeO_(2) catalysts with promising catalytic behavior.It provides theoretical guidance for better designing the optimal Co/CeO_(2) catalyst for tailored catalytic reactions. 展开更多
关键词 Co cluster growth Ce-based catalysts methane activation DFT
下载PDF
Investigation of oxy-fuel combustion for methane and acid gas in a diffusion flame
18
作者 Songling Guo Xun Tao +5 位作者 Fan Zhou Mengyan Yu Yufan Wu Yunfei Gao Lu Ding Fuchen Wang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第1期106-116,共11页
Co-combustion of methane(CH4)and acid gas(AG)is required to sustain the temperature in Claus reaction furnace.In this study,oxy-fuel combustion of methane and acid gas has been experimentally studied in a diffusion fl... Co-combustion of methane(CH4)and acid gas(AG)is required to sustain the temperature in Claus reaction furnace.In this study,oxy-fuel combustion of methane and acid gas has been experimentally studied in a diffusion flame.Three equivalence ratios(ER=1.0,1.5,2.0)and CH_(4)-addition ratios(CH_(4)/AG=0.3,0.5,0.7)were examined and the flame was interpreted by analyzing the distributions of the temperature and species concentration along central axial.CH_(4)-AG diffusion flame could be classified into three sections namely initial reaction,oxidation and complex reaction sections.Competitive oxidation of CH_(4)and H_(2)S was noted in the first section wherein H_(2)S was preferred and both were mainly proceeding decomposition and partial oxidation.SO_(2)was formed at oxidation section together with obvious presence of H2 and CO.However,H2 and CO were inclined to be sustained under fuel rich condition in the complex reaction section.Reducing ER and increasing CH4/AG contributed to higher temperature,H_(2)S and CH_(4)oxidation and CO_(2)reactivity.Hence a growing trend for CH_(4)and AG to convert into H_(2),CO and SO_(2)could be witnessed.And this factor enhanced the generation of CS2 and COS in the flame inner core by interactions of CH4 and CO_(2)with sulfur species.COS was formed through the interactions of CO and CO_(2)with sulfur species.The CS_(2)production directly relied on reaction of CH_(4)with sulfur species.The concentration of COS was greater than CS_(2)since CS_(2)was probably inhibited due to the presence of H_(2).COS and CS_(2)could be consumed by further oxidation or other complex reactions. 展开更多
关键词 Acid gas methanE Oxy-fuel combustion OXIDATION Chemical analysis Carbon sulfides
下载PDF
Methane Emission from Rice Fields:Necessity for Molecular Approach for Mitigation
19
作者 Sujeevan RAJENDRAN Hyeonseo PARK +6 位作者 Jiyoung KIM Soon Ju PARK Dongjin SHIN Jong-Hee LEE Young Hun SONG Nam-Chon PAEK Chul Min KIM 《Rice science》 SCIE CSCD 2024年第2期159-178,共20页
Anthropogenic methane emissions are a leading cause of the increase in global averagetemperatures,often referred to as global warming.Flooded soils play a significant role in methaneproduction,where the anaerobic cond... Anthropogenic methane emissions are a leading cause of the increase in global averagetemperatures,often referred to as global warming.Flooded soils play a significant role in methaneproduction,where the anaerobic conditions promote the production of methane by methanogenicmicroorganisms.Rice fields contribute a considerable portion of agricultural methane emissions,as riceplants provide both factors that enhance and limit methane production.Rice plants harbor both methaneproducingand methane-oxidizing microorganisms.Exudates from rice roots provide source for methaneproduction,while oxygen delivered from the root aerenchyma enhances methane oxidation.Studies haveshown that the diversity of these microorganisms depends on rice cultivars with some genes characterizedas harboring specific groups of microorganisms related to methane emissions.However,there is still aneed for research to determine the balance between methane production and oxidation,as rice plantspossess the ability to regulate net methane production.Various agronomical practices,such as fertilizerand water management,have been employed to mitigate methane emissions.Nevertheless,studiescorrelating agronomic and chemical management of methane with productivity are limited.Moreover,evidences for breeding low-methane-emitting rice varieties are scattered largely due to the absence ofcoordinated breeding programs.Research has indicated that phenotypic characteristics,such as rootbiomass,shoot architecture,and aerenchyma,are highly correlated with methane emissions.This reviewdiscusses available studies that involve the correlation between plant characteristics and methaneemissions.It emphasizes the necessity and importance of breeding low-methane-emitting rice varieties inaddition to existing agronomic,biological,and chemical practices.The review also delves into the idealphenotypic and physiological characteristics of low-methane-emitting rice and potential breeding techniques,drawing from studies conducted with diverse varieties,mutants,and transgenic plants. 展开更多
关键词 methane emission rice breeding AERENCHYMA greenhouse gas radial oxygen loss
下载PDF
Micro segment analysis of supercritical methane thermal-hydraulic performance and pseudo-boiling in a PCHE straight channel
20
作者 Qian Li Zi-Jie Lin +3 位作者 Liu Yang Yue Wang Yue Li Wei-Hua Cai 《Petroleum Science》 SCIE EI CAS CSCD 2024年第2期1275-1289,共15页
The printed circuit heat exchanger(PCHE) is receiving wide attention as a new kind of compact heat exchanger and is considered as a promising vaporizer in the LNG process. In this paper, a PCHE straight channel in the... The printed circuit heat exchanger(PCHE) is receiving wide attention as a new kind of compact heat exchanger and is considered as a promising vaporizer in the LNG process. In this paper, a PCHE straight channel in the length of 500 mm is established, with a semicircular cross section in a diameter of 1.2 mm.Numerical simulation is employed to investigate the flow and heat transfer performance of supercritical methane in the channel. The pseudo-boiling theory is adopted and the liquid-like, two-phase-like, and vapor-like regimes are divided for supercritical methane to analyze the heat transfer and flow features.The results are presented in micro segment to show the local convective heat transfer coefficient and pressure drop. It shows that the convective heat transfer coefficient in segments along the channel has a significant peak feature near the pseudo-critical point and a heat transfer deterioration when the average fluid temperature in the segment is higher than the pseudo-critical point. The reason is explained with the generation of vapor-like film near the channel wall that the peak feature related to a nucleateboiling-like state and heat transfer deterioration related to a film-boiling-like state. The effects of parameters, including mass flow rate, pressure, and wall heat flux on flow and heat transfer were analyzed.In calculating of the averaged heat transfer coefficient of the whole channel, the traditional method shows significant deviation and the micro segment weighted average method is adopted. The pressure drop can mainly be affected by the mass flux and pressure and little affected by the wall heat flux. The peak of the convective heat transfer coefficient can only form at high mass flux, low wall heat flux, and near critical pressure, in which condition the nucleate-boiling-like state is easier to appear. Moreover,heat transfer deterioration will always appear, since the supercritical flow will finally develop into a filmboiling-like state. So heat transfer deterioration should be taken seriously in the design and safe operation of vaporizer PCHE. The study of this work clarified the local heat transfer and flow feature of supercritical methane in microchannel and contributed to the deep understanding of supercritical methane flow of the vaporization process in PCHE. 展开更多
关键词 Printed circuit heat exchanger Vaporization Supercritical methane Pseudo-boiling Micro segment analysis
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部