Tegillarca granosa,as a popular seafood among consumers,is easily susceptible to pollution from heavy metals.Thus,it is essential to develop a rapid detection method for Tegillarca granosa.For this issue,five categori...Tegillarca granosa,as a popular seafood among consumers,is easily susceptible to pollution from heavy metals.Thus,it is essential to develop a rapid detection method for Tegillarca granosa.For this issue,five categories of Tegillarca granosa samples consisting of a healthy group;Zn,Pb,and Cd polluted groups;and a mixed pollution group of all three metals were used to detect heavy metal pollution by combining laser-induced breakdown spectrometry(LIBS)and the newly proposed linear regression classification-sum of rank difference(LRC-SRD)algorithm.As the comparison models,least regression classification(LRC),support vector machine(SVM),and k-nearest neighbor(KNN)and linear discriminant analysis were also utilized.Satisfactory accuracy(0.93)was obtained by LRC-SRD model and which performs better than other models.This demonstrated that LIBS coupled with LRC-SRD is an efficient framework for Tegillarca granosa heavy metal detection and provides an alternative to replace traditional methods.展开更多
Objectives:This study presents a method combining a one-class classifier and laser-induced breakdown spectrometry(LIBS)to quickly identify healthy Tegillarca granosa(T.granosa).Materials and Methods:The sum of ranking...Objectives:This study presents a method combining a one-class classifier and laser-induced breakdown spectrometry(LIBS)to quickly identify healthy Tegillarca granosa(T.granosa).Materials and Methods:The sum of ranking differences(SRD)was used to fuse multiple anomaly detection metrics to build the one-class classifier,which was only trained with healthy T.granosa.The one-class classifier can identify healthy T.granosa to exclude non-healthy T.granosa.The proposed method calculated multiple anomaly detection metrics and standardized them to obtain a fusion matrix.Based on the fusion matrix,the samples were ranked by SRD and those ranked lowest and below the threshold were considered to be unhealthy.Results:Multiple anomaly detection metrics were fused by the SRD algorithm and tested on each band,and the final fusion model achieved an accuracy rate of 98.46%,a sensitivity of 100%,and a specificity of 80%.The remaining three single classification models obtained the following results:the SVDD model achieved an accuracy rate of 87.69%,a sensitivity of 90%,and a specificity of 60%;the OCSVM model achieved an accuracy rate of 80%,a sensitivity of 76.67%,and a specificity of 60%;and the DD-SIMCA model achieved an accuracy rate of 95.38%,a sensitivity of 98.33%,and a specificity of 60%.Conclusions:The experimental results showed that the proposed method achieved better results than the traditional one-class classification methods with a single metric.Therefore,the fusion method effectively improves the performance of traditional one-class classifiers when using LIBS to quickly identify healthy substances(healthy T.granosa).展开更多
基金supported by the Natural Science Foundation of Zhejiang Province(No.LY21C200001)National Natural Science Foundation of China(No.31571920)+1 种基金Wenzhou Science and Technology Project(No.N20160004)Wenzhou Basic Public Welfare Project(No.N20190017)。
文摘Tegillarca granosa,as a popular seafood among consumers,is easily susceptible to pollution from heavy metals.Thus,it is essential to develop a rapid detection method for Tegillarca granosa.For this issue,five categories of Tegillarca granosa samples consisting of a healthy group;Zn,Pb,and Cd polluted groups;and a mixed pollution group of all three metals were used to detect heavy metal pollution by combining laser-induced breakdown spectrometry(LIBS)and the newly proposed linear regression classification-sum of rank difference(LRC-SRD)algorithm.As the comparison models,least regression classification(LRC),support vector machine(SVM),and k-nearest neighbor(KNN)and linear discriminant analysis were also utilized.Satisfactory accuracy(0.93)was obtained by LRC-SRD model and which performs better than other models.This demonstrated that LIBS coupled with LRC-SRD is an efficient framework for Tegillarca granosa heavy metal detection and provides an alternative to replace traditional methods.
基金The authors would like to acknowledge the financial support provided by the Natural Science Foundation of Zhejiang(No.LY21C200001)China,the National Natural Science Foundation of China(Nos.62105245 and 61805180)the Wenzhou Science and Technology Bureau General Project(Nos.S2020011 and G20200044),China。
文摘Objectives:This study presents a method combining a one-class classifier and laser-induced breakdown spectrometry(LIBS)to quickly identify healthy Tegillarca granosa(T.granosa).Materials and Methods:The sum of ranking differences(SRD)was used to fuse multiple anomaly detection metrics to build the one-class classifier,which was only trained with healthy T.granosa.The one-class classifier can identify healthy T.granosa to exclude non-healthy T.granosa.The proposed method calculated multiple anomaly detection metrics and standardized them to obtain a fusion matrix.Based on the fusion matrix,the samples were ranked by SRD and those ranked lowest and below the threshold were considered to be unhealthy.Results:Multiple anomaly detection metrics were fused by the SRD algorithm and tested on each band,and the final fusion model achieved an accuracy rate of 98.46%,a sensitivity of 100%,and a specificity of 80%.The remaining three single classification models obtained the following results:the SVDD model achieved an accuracy rate of 87.69%,a sensitivity of 90%,and a specificity of 60%;the OCSVM model achieved an accuracy rate of 80%,a sensitivity of 76.67%,and a specificity of 60%;and the DD-SIMCA model achieved an accuracy rate of 95.38%,a sensitivity of 98.33%,and a specificity of 60%.Conclusions:The experimental results showed that the proposed method achieved better results than the traditional one-class classification methods with a single metric.Therefore,the fusion method effectively improves the performance of traditional one-class classifiers when using LIBS to quickly identify healthy substances(healthy T.granosa).