This paper studies large-scale multi-input multi-output(MIMO)orthogonal frequency division multiplexing(OFDM)communications in a broadband frequency-selective channel,where a massive MIMO base station(BS)communicates ...This paper studies large-scale multi-input multi-output(MIMO)orthogonal frequency division multiplexing(OFDM)communications in a broadband frequency-selective channel,where a massive MIMO base station(BS)communicates with multiple users equipped with multi-antenna.We develop a hybrid precoding design to maximize the weighted sum-rate(WSR)of the users by optimizing the digital and the analog precoders alternately.For the digital part,we employ block-diagonalization to eliminate inter-user interference and apply water-filling power allocation to maximize the WSR.For the analog part,the optimization of the PSN is formulated as an unconstrained problem,which can be efficiently solved by a gradient descent method.Numerical results show that the proposed block-diagonal hybrid precoding algorithm can outperform the existing works.展开更多
In this paper,we propose an active reconfigurable intelligent surface(RIS)enabled hybrid relaying scheme for a multi-antenna wireless powered communication network(WPCN),where the active RIS is employed to assist both...In this paper,we propose an active reconfigurable intelligent surface(RIS)enabled hybrid relaying scheme for a multi-antenna wireless powered communication network(WPCN),where the active RIS is employed to assist both wireless energy transfer(WET)from the power station(PS)to energyconstrained users and wireless information transmission(WIT)from users to the receiving station(RS).For further performance enhancement,we propose to employ both transmit beamforming at the PS and receive beamforming at the RS.We formulate a sumrate maximization problem by jointly optimizing the RIS phase shifts and amplitude reflection coefficients for both the WET and the WIT,transmit and receive beamforming vectors,and network resource allocation.To solve this non-convex problem,we propose an efficient alternating optimization algorithm with the linear minimum mean squared error criterion,semidefinite relaxation(SDR)and successive convex approximation techniques.Specifically,the tightness of applying the SDR is proved.Simulation results demonstrate that our proposed scheme with 10 reflecting elements(REs)and 4 antennas can achieve 17.78%and 415.48%performance gains compared to the single-antenna scheme with 10 REs and passive RIS scheme with 100 REs,respectively.展开更多
在基于非正交多址接入技术的多用户下行室内可见光通信(Visible light communication system based on non⁃orthogonal multiple access technology,VLC⁃NOMA)系统中,针对和速率与用户公平性冲突的问题,提出一种基于加权和速率最大化的...在基于非正交多址接入技术的多用户下行室内可见光通信(Visible light communication system based on non⁃orthogonal multiple access technology,VLC⁃NOMA)系统中,针对和速率与用户公平性冲突的问题,提出一种基于加权和速率最大化的迭代功率分配方案。该方案以最大化加权和速率为目标,可通过改变权重因子来调节用户公平性。由于目标问题属于非凸优化问题,通过辅助变量法和凸优化理论将该非凸问题转化为凹问题,再通过拉格朗日对偶法进行求解,并根据问题的解设计了一种迭代功率分配算法。对所提算法的收敛性、系统和速率以及用户公平性进行了仿真。结果表明,所提迭代功率分配算法具有良好的收敛性,相较于VLC⁃OMA系统,VLC⁃NOMA系统能够获得更好的和速率性能。通过调整权重因子,在牺牲较小系统和速率的情况下能够获得比现有功率分配方案更好的系统和速率与用户公平性。展开更多
非正交多址接入(Non-Orthogonal Multiple Access,NOMA)技术与设备到设备(Device-to-Device,D2D)通信技术相结合在实现高效频谱利用率和大规模接入上有着突出的优势。针对现有的NOMA-D2D系统存在的信道分配模式单一和D2D组内功率分配难...非正交多址接入(Non-Orthogonal Multiple Access,NOMA)技术与设备到设备(Device-to-Device,D2D)通信技术相结合在实现高效频谱利用率和大规模接入上有着突出的优势。针对现有的NOMA-D2D系统存在的信道分配模式单一和D2D组内功率分配难以获得最优解的问题,构建了以D2D组和速率为优化目标的联合资源分配算法的方案:首先,在子信道分配上,将问题转换为双边匹配问题,提出了一种基于多对一场景下的D2D组信道分配算法;然后运用基于逐次凸逼近的凸差分(Difference of two Convex functions,DC)编程方法求出接近最优的功率分配值。仿真结果表明,提出的多对一场景下信道匹配算法在和速率上明显优于一对一场景下的信道匹配算法,提出的功率分配算法相比起对偶迭代算法更接近最优功率分配。展开更多
The accuracy of acquired channel state information(CSI)for beamforming design is essential for achievable performance in multiple-input multiple-output(MIMO)systems.However,in a high-speed moving scene with time-divis...The accuracy of acquired channel state information(CSI)for beamforming design is essential for achievable performance in multiple-input multiple-output(MIMO)systems.However,in a high-speed moving scene with time-division duplex(TDD)mode,the acquired CSI depending on the channel reciprocity is inevitably outdated,leading to outdated beamforming design and then performance degradation.In this paper,a robust beamforming design under channel prediction errors is proposed for a time-varying MIMO system to combat the degradation further,based on the channel prediction technique.Specifically,the statistical characteristics of historical channel prediction errors are exploited and modeled.Moreover,to deal with random error terms,deterministic equivalents are adopted to further explore potential beamforming gain through the statistical information and ultimately derive the robust design aiming at maximizing weighted sum-rate performance.Simulation results show that the proposed beamforming design can maintain outperformance during the downlink transmission time even when channels vary fast,compared with the traditional beamforming design.展开更多
随着第五代移动通信技术(5th Generation Mobile Communication Technology,5G)网络的大规模商业化部署,超5G(Beyond 5G,B5G)和第六代移动通信技术(6th Generation Mobile Communication Technology,6G)逐渐成为研究热点。非正交多址接...随着第五代移动通信技术(5th Generation Mobile Communication Technology,5G)网络的大规模商业化部署,超5G(Beyond 5G,B5G)和第六代移动通信技术(6th Generation Mobile Communication Technology,6G)逐渐成为研究热点。非正交多址接入(Non-Orthogonal Multiple Access,NOMA)作为一种新型接入技术,有望成为B5G和6G网络中的关键多址接入技术。与此同时,多载波通信具有抗频率选择性衰落和高频谱效率的特点,因此将多载波技术与NOMA相结合成为B5G和6G的一个重要研究方向。从能效、功耗以及速率方面概述了多载波非协作NOMA、多载波协作NOMA的资源分配问题。探讨当前研究存在的一些缺陷与不足,并展望多载波NOMA系统资源分配问题的未来研究方向。展开更多
基金supported by National Natural Science Foundation of China(No.61771005)
文摘This paper studies large-scale multi-input multi-output(MIMO)orthogonal frequency division multiplexing(OFDM)communications in a broadband frequency-selective channel,where a massive MIMO base station(BS)communicates with multiple users equipped with multi-antenna.We develop a hybrid precoding design to maximize the weighted sum-rate(WSR)of the users by optimizing the digital and the analog precoders alternately.For the digital part,we employ block-diagonalization to eliminate inter-user interference and apply water-filling power allocation to maximize the WSR.For the analog part,the optimization of the PSN is formulated as an unconstrained problem,which can be efficiently solved by a gradient descent method.Numerical results show that the proposed block-diagonal hybrid precoding algorithm can outperform the existing works.
基金supported in part by the National Natural Science Foundation of China (No.62071242 and No.61901229)in part by the Postgraduate Research&Practice Innovation Program of Jiangsu Province(No.KYCX22 0967)in part by the Open Research Project of Jiangsu Provincial Key Laboratory of Photonic and Electronic Materials Sciences and Technology (No.NJUZDS2022-008)
文摘In this paper,we propose an active reconfigurable intelligent surface(RIS)enabled hybrid relaying scheme for a multi-antenna wireless powered communication network(WPCN),where the active RIS is employed to assist both wireless energy transfer(WET)from the power station(PS)to energyconstrained users and wireless information transmission(WIT)from users to the receiving station(RS).For further performance enhancement,we propose to employ both transmit beamforming at the PS and receive beamforming at the RS.We formulate a sumrate maximization problem by jointly optimizing the RIS phase shifts and amplitude reflection coefficients for both the WET and the WIT,transmit and receive beamforming vectors,and network resource allocation.To solve this non-convex problem,we propose an efficient alternating optimization algorithm with the linear minimum mean squared error criterion,semidefinite relaxation(SDR)and successive convex approximation techniques.Specifically,the tightness of applying the SDR is proved.Simulation results demonstrate that our proposed scheme with 10 reflecting elements(REs)and 4 antennas can achieve 17.78%and 415.48%performance gains compared to the single-antenna scheme with 10 REs and passive RIS scheme with 100 REs,respectively.
文摘在基于非正交多址接入技术的多用户下行室内可见光通信(Visible light communication system based on non⁃orthogonal multiple access technology,VLC⁃NOMA)系统中,针对和速率与用户公平性冲突的问题,提出一种基于加权和速率最大化的迭代功率分配方案。该方案以最大化加权和速率为目标,可通过改变权重因子来调节用户公平性。由于目标问题属于非凸优化问题,通过辅助变量法和凸优化理论将该非凸问题转化为凹问题,再通过拉格朗日对偶法进行求解,并根据问题的解设计了一种迭代功率分配算法。对所提算法的收敛性、系统和速率以及用户公平性进行了仿真。结果表明,所提迭代功率分配算法具有良好的收敛性,相较于VLC⁃OMA系统,VLC⁃NOMA系统能够获得更好的和速率性能。通过调整权重因子,在牺牲较小系统和速率的情况下能够获得比现有功率分配方案更好的系统和速率与用户公平性。
文摘非正交多址接入(Non-Orthogonal Multiple Access,NOMA)技术与设备到设备(Device-to-Device,D2D)通信技术相结合在实现高效频谱利用率和大规模接入上有着突出的优势。针对现有的NOMA-D2D系统存在的信道分配模式单一和D2D组内功率分配难以获得最优解的问题,构建了以D2D组和速率为优化目标的联合资源分配算法的方案:首先,在子信道分配上,将问题转换为双边匹配问题,提出了一种基于多对一场景下的D2D组信道分配算法;然后运用基于逐次凸逼近的凸差分(Difference of two Convex functions,DC)编程方法求出接近最优的功率分配值。仿真结果表明,提出的多对一场景下信道匹配算法在和速率上明显优于一对一场景下的信道匹配算法,提出的功率分配算法相比起对偶迭代算法更接近最优功率分配。
基金supported by the ZTE Industry⁃University⁃Institute Cooper⁃ation Funds under Grant No.2021ZTE01⁃03.
文摘The accuracy of acquired channel state information(CSI)for beamforming design is essential for achievable performance in multiple-input multiple-output(MIMO)systems.However,in a high-speed moving scene with time-division duplex(TDD)mode,the acquired CSI depending on the channel reciprocity is inevitably outdated,leading to outdated beamforming design and then performance degradation.In this paper,a robust beamforming design under channel prediction errors is proposed for a time-varying MIMO system to combat the degradation further,based on the channel prediction technique.Specifically,the statistical characteristics of historical channel prediction errors are exploited and modeled.Moreover,to deal with random error terms,deterministic equivalents are adopted to further explore potential beamforming gain through the statistical information and ultimately derive the robust design aiming at maximizing weighted sum-rate performance.Simulation results show that the proposed beamforming design can maintain outperformance during the downlink transmission time even when channels vary fast,compared with the traditional beamforming design.
文摘随着第五代移动通信技术(5th Generation Mobile Communication Technology,5G)网络的大规模商业化部署,超5G(Beyond 5G,B5G)和第六代移动通信技术(6th Generation Mobile Communication Technology,6G)逐渐成为研究热点。非正交多址接入(Non-Orthogonal Multiple Access,NOMA)作为一种新型接入技术,有望成为B5G和6G网络中的关键多址接入技术。与此同时,多载波通信具有抗频率选择性衰落和高频谱效率的特点,因此将多载波技术与NOMA相结合成为B5G和6G的一个重要研究方向。从能效、功耗以及速率方面概述了多载波非协作NOMA、多载波协作NOMA的资源分配问题。探讨当前研究存在的一些缺陷与不足,并展望多载波NOMA系统资源分配问题的未来研究方向。