The first two series(RMM1 and RMM2) of RMM Index(all-Season Real-time Multivariate MJO Index) are computed to obtain the interannual variation of the preceding winter(preceding December to current February) MJO streng...The first two series(RMM1 and RMM2) of RMM Index(all-Season Real-time Multivariate MJO Index) are computed to obtain the interannual variation of the preceding winter(preceding December to current February) MJO strength,according to which active(or inactive) years of preceding winter MJO are divided.By utilizing the data provided by NCEP/NCAR,CMAP and China's 160 stations from 1979 to 2008,we studied the preceding winter MJO strength and discovered that the summer precipitation in the basin are of significantly negative correlation,i.e.when the preceding winter MJO is relatively active,the summer precipitation in the basin decreases,and vise verse.We also analyzed the causes.When the preceding winter MJO is relatively active,its release of potential heat facilities Inter-Tropical Convergence Zone(ITCZ) to strengthen and locate northward in winter and propagate northeastward.This abnormal situation lasts from winter to summer.In mid-May,ITCZ jumps northward to the South China Sea,the western Pacific subtropical high withdraws eastward,and the South China Sea summer monsoon sets off and strengthens.In summer,ITCZ propagates to South China Sea-subtropical western Pacific,the zonal circulation of subtropical Pacific strengthens,and a local meridional circulation of the South China Sea to the basin area forms,giving rise to the East Asia Pacific teleconnection wave-train.An East Asian monsoon trough and the Meiyu front show opposite features from south to north,the East Asian summer monsoon strengthens and advances northward.As a result,the summer monsoon is weakened as the basin is controlled by the subtropical high continually,with less rain in summer.On the contrary,when the preceding winter MJO is inactive,ITCZ weakens and is located southward,the subtropical high is located southward in summer,and the basin is in a region of ascending airflow with prevailing southwest wind.The East Asian monsoon trough and EASM weaken so that summer monsoon is reduced in the basin where precipitation increases.展开更多
Changing precipitation in the densely populated Sichuan basin may have a great impact on human life. This study analyzes the change in summer precipitation since 1951 over the western Sichuan basin, one of the regions...Changing precipitation in the densely populated Sichuan basin may have a great impact on human life. This study analyzes the change in summer precipitation since 1951 over the western Sichuan basin, one of the regions of the heaviest rainfall in China, by using two datasets provided by the Chinese Meteorological Data Center. The results indicate that summer (from June to September) precipitation over the western Sichuan basin shows a significantly decreasing trend. The summer precipitation over this region has decreased by about 20% since the 1950s, with a rate of decrease of about 40 mm per decade.展开更多
The Eurasian teleconnection pattern (EU) is an important low-frequency pattern with well-known impacts on climate anomalies in Eurasia. The difference of low-level v-winds in several regions in the Eurasian mid-high...The Eurasian teleconnection pattern (EU) is an important low-frequency pattern with well-known impacts on climate anomalies in Eurasia. The difference of low-level v-winds in several regions in the Eurasian mid-high latitudes is defined as the EU index (EUIv). In this study, the relationship between the winter EUIv and precipitation in the following summer over China is investigated. Results show that there is a significant positive (negative) correlation between the winter EUIv and the following summer precipitation over North China (the Yangtze River-Huaihe River basins). Meanwhile, an interdecadal variability exists in the interannual relationship, and the correlation has become significantly enhanced since the early 1980s. Thus, the proposed EUIv may have implications for the prediction of summer precipitation anomalies over China. In positive winter EUIv years, three cyclonic circulation anomalies are observed--over the Ural Mountains, the Okhotsk Sea, and the subtropical western North Pacific. That is, the Ural blocking and Okhotsk blocking are inactive, zonal circulation prevails in the mid-high latitudes, and the western Pacific subtropical high tends to be weaker and locates to the north of its normal position in the following summer. This leads to above-normal moisture penetrating into the northern part of East China, and significant positive (negative) precipitation anomalies over North China (the Yangtze River-Huaihe River basins), and vice versa. Further examination shows that the SST anomalies over the Northwest Pacific and subtropical central North Pacific may both contribute to the formation of EUIv-related circulation anomalies over the western North Pacific.展开更多
Vegetation growth status is an important indicator of ecological security.The Tarim River Basin is located in the inland arid region of Northwest China and has a highly fragile ecological environment.Assessing the veg...Vegetation growth status is an important indicator of ecological security.The Tarim River Basin is located in the inland arid region of Northwest China and has a highly fragile ecological environment.Assessing the vegetation net primary productivity(NPP)of the Tarim River Basin can provide insights into the vegetation growth variations in the region.Therefore,based on the Google Earth Engine(GEE)cloud platform,we studied the spatiotemporal variation of vegetation NPP in the Tarim River Basin(except for the eastern Gobi and Kumutag deserts)from 2001 to 2020 and analyzed the correlations between vegetation NPP and meteorological factors(air temperature and precipitation)using the Sen slope estimation method,coefficient of variation,and rescaled range analysis method.In terms of temporal characteristics,vegetation NPP in the Tarim River Basin showed an overall fluctuating upward trend from 2001 to 2020,with the smallest value of 118.99 g C/(m2•a)in 2001 and the largest value of 155.07 g C/(m2•a)in 2017.Regarding the spatial characteristics,vegetation NPP in the Tarim River Basin showed a downward trend from northwest to southeast along the outer edge of the study area.The annual average value of vegetation NPP was 133.35 g C/(m2•a),and the area with annual average vegetation NPP values greater than 100.00 g C/(m2•a)was 82,638.75 km2,accounting for 57.76%of the basin.The future trend of vegetation NPP was dominated by anti-continuity characteristic;the percentage of the area with anti-continuity characteristic was 63.57%.The area with a significant positive correlation between vegetation NPP and air temperature accounted for 53.74%of the regions that passed the significance test,while the area with a significant positive correlation between vegetation NPP and precipitation occupied 98.68%of the regions that passed the significance test.Hence,the effect of precipitation on vegetation NPP was greater than that of air temperature.The results of this study improve the understanding on the spatiotemporal variation of vegetation NPP in the Tarim River Basin and the impact of meteorological factors on vegetation NPP.展开更多
Large parts of East and South Asia were affected by heavy precipitation and flooding during early summer 2020.This study provides both a statistical and dynamical characterization of rains and floods affecting the Yan...Large parts of East and South Asia were affected by heavy precipitation and flooding during early summer 2020.This study provides both a statistical and dynamical characterization of rains and floods affecting the Yangtze River Basin(YRB).By aggregating daily and monthly precipitation over river basins across Asia,it is shown that the YRB is one of the areas that was particularly affected.June and July 2020 rainfall was higher than in the previous 20 years,and the YRB experienced anomalously high rainfall across most of its sub-basins.YRB discharge also attained levels not seen since 1998/1999.An automated method detecting the daily position of the East Asian Summer Monsoon Front(EASMF)is applied to show that the anomalously high YRB precipitation was associated with a halted northward progression of the EASMF and prolonged mei-yu conditions over the YRB lasting more than one month.Two 5-day heavy-precipitation episodes(12−16 June and 4−8 July 2020)are selected from this period for dynamical characterization,including Lagrangian trajectory analysis.Particular attention is devoted to the dynamics of the airstreams converging at the EASMF.Both episodes display heavy precipitation and convergence of monsoonal and subtropical air masses.However,clear differences are identified in the upper-level flow pattern,substantially affecting the balance of airmass advection towards the EASMF.This study contextualizes heavy precipitation in Asia in summer 2020 and showcases several analysis tools developed by the authors for the study of such events.展开更多
Sea surface temperature anomaly(SSTA)is a major signal for prediction of summer precipitation in East Asia.The relationship between SSTA in the tropical oceans and summer precipitation in East Asia has been documented...Sea surface temperature anomaly(SSTA)is a major signal for prediction of summer precipitation in East Asia.The relationship between SSTA in the tropical oceans and summer precipitation in East Asia has been documented in many studies.However,the relationship between SSTA and late summer(July–August)precipitation(JAP)over Northeast China(NEC)on the interannual timescale has received little attention.In this study,we examine the relationship between Indian Ocean Basin warming(IOBW)anomalies in spring and the JAP in NEC since the early1960 s.A significant positive correlation is found between the spring IOBW index and JAP over NEC.The positive spring IOBW anomaly is followed by an anomalous anticyclone from Northwest Pacific to the Korean Peninsula.This anomalous anticyclone favors a significantly strong and northward western Pacific subtropical high(WPSH),which facilitates anomalous southerly winds over NEC and the transport of more water vapor into this region.Further analysis indicates that the spring IOBW anomalies have important impacts on the vertical air motion in the tropics and subtropics during the summer.Significant anomalous upward(downward)motion covering Indonesia(Northwest Pacific to the southern Korean Peninsula)occurs when the IOBW is in its positive phase,which favors the northward movement of the WPSH in late summer and more precipitation over NEC in July–August.Modulation of the atmospheric circulation by this mechanism further influences the JAP over NEC.展开更多
Hourly summer precipitation data recorded at 21 stations during 1961-2004 in the Haihe River Basin in North China were an alyzed. The results show that the precipitation frequency and amount and the morning peak mainl...Hourly summer precipitation data recorded at 21 stations during 1961-2004 in the Haihe River Basin in North China were an alyzed. The results show that the precipitation frequency and amount and the morning peak mainly relating to longduratiol rainfall events decreased during this period, whereas the normalized afternoon peak mainly relating to short-duration event: increased, which may suggest that the proportion of short-duration rainfall has increased as the total summer rainfall has de creased. For short-duration events, the mean intensity and peak intensity increased at most stations and the time to peak inten sity decreased, which may be attributable to the higher thermal contrast between the warmer lower surface and cooler uppe level. In the case of long-duration events, the total amount was significantly correlated with the East Asian summer monsool index for the period 1961-2001 (correlation coefficient of 0.63). Although the total amount of rainfall in long-duration event: decreased in the basin, the mean intensity and peak intensity, as well as the extreme hourly precipitation, increased in the western basin and decreased in the eastern basin.展开更多
基金Joint Project of Natural Science Foundation of China and Yunnan Province (U0833602)
文摘The first two series(RMM1 and RMM2) of RMM Index(all-Season Real-time Multivariate MJO Index) are computed to obtain the interannual variation of the preceding winter(preceding December to current February) MJO strength,according to which active(or inactive) years of preceding winter MJO are divided.By utilizing the data provided by NCEP/NCAR,CMAP and China's 160 stations from 1979 to 2008,we studied the preceding winter MJO strength and discovered that the summer precipitation in the basin are of significantly negative correlation,i.e.when the preceding winter MJO is relatively active,the summer precipitation in the basin decreases,and vise verse.We also analyzed the causes.When the preceding winter MJO is relatively active,its release of potential heat facilities Inter-Tropical Convergence Zone(ITCZ) to strengthen and locate northward in winter and propagate northeastward.This abnormal situation lasts from winter to summer.In mid-May,ITCZ jumps northward to the South China Sea,the western Pacific subtropical high withdraws eastward,and the South China Sea summer monsoon sets off and strengthens.In summer,ITCZ propagates to South China Sea-subtropical western Pacific,the zonal circulation of subtropical Pacific strengthens,and a local meridional circulation of the South China Sea to the basin area forms,giving rise to the East Asia Pacific teleconnection wave-train.An East Asian monsoon trough and the Meiyu front show opposite features from south to north,the East Asian summer monsoon strengthens and advances northward.As a result,the summer monsoon is weakened as the basin is controlled by the subtropical high continually,with less rain in summer.On the contrary,when the preceding winter MJO is inactive,ITCZ weakens and is located southward,the subtropical high is located southward in summer,and the basin is in a region of ascending airflow with prevailing southwest wind.The East Asian monsoon trough and EASM weaken so that summer monsoon is reduced in the basin where precipitation increases.
基金supported by the National Basic Research Program of China(Grant No.2009CB421400)the National Natural Science Foundation of China(Grant No.40725016)
文摘Changing precipitation in the densely populated Sichuan basin may have a great impact on human life. This study analyzes the change in summer precipitation since 1951 over the western Sichuan basin, one of the regions of the heaviest rainfall in China, by using two datasets provided by the Chinese Meteorological Data Center. The results indicate that summer (from June to September) precipitation over the western Sichuan basin shows a significantly decreasing trend. The summer precipitation over this region has decreased by about 20% since the 1950s, with a rate of decrease of about 40 mm per decade.
基金supported by the National Natural Science Foundation of China(Grant Nos.41505061,41530531 and 41405092)the National Basic Research Program of China(Grant Nos.2012CB955902 and 2013CB430204)
文摘The Eurasian teleconnection pattern (EU) is an important low-frequency pattern with well-known impacts on climate anomalies in Eurasia. The difference of low-level v-winds in several regions in the Eurasian mid-high latitudes is defined as the EU index (EUIv). In this study, the relationship between the winter EUIv and precipitation in the following summer over China is investigated. Results show that there is a significant positive (negative) correlation between the winter EUIv and the following summer precipitation over North China (the Yangtze River-Huaihe River basins). Meanwhile, an interdecadal variability exists in the interannual relationship, and the correlation has become significantly enhanced since the early 1980s. Thus, the proposed EUIv may have implications for the prediction of summer precipitation anomalies over China. In positive winter EUIv years, three cyclonic circulation anomalies are observed--over the Ural Mountains, the Okhotsk Sea, and the subtropical western North Pacific. That is, the Ural blocking and Okhotsk blocking are inactive, zonal circulation prevails in the mid-high latitudes, and the western Pacific subtropical high tends to be weaker and locates to the north of its normal position in the following summer. This leads to above-normal moisture penetrating into the northern part of East China, and significant positive (negative) precipitation anomalies over North China (the Yangtze River-Huaihe River basins), and vice versa. Further examination shows that the SST anomalies over the Northwest Pacific and subtropical central North Pacific may both contribute to the formation of EUIv-related circulation anomalies over the western North Pacific.
基金funded by the National Natural Science Foundation of China(42161049,41761019,41061052)the Special Project for Talent Development in the Western Region(201408655089).
文摘Vegetation growth status is an important indicator of ecological security.The Tarim River Basin is located in the inland arid region of Northwest China and has a highly fragile ecological environment.Assessing the vegetation net primary productivity(NPP)of the Tarim River Basin can provide insights into the vegetation growth variations in the region.Therefore,based on the Google Earth Engine(GEE)cloud platform,we studied the spatiotemporal variation of vegetation NPP in the Tarim River Basin(except for the eastern Gobi and Kumutag deserts)from 2001 to 2020 and analyzed the correlations between vegetation NPP and meteorological factors(air temperature and precipitation)using the Sen slope estimation method,coefficient of variation,and rescaled range analysis method.In terms of temporal characteristics,vegetation NPP in the Tarim River Basin showed an overall fluctuating upward trend from 2001 to 2020,with the smallest value of 118.99 g C/(m2•a)in 2001 and the largest value of 155.07 g C/(m2•a)in 2017.Regarding the spatial characteristics,vegetation NPP in the Tarim River Basin showed a downward trend from northwest to southeast along the outer edge of the study area.The annual average value of vegetation NPP was 133.35 g C/(m2•a),and the area with annual average vegetation NPP values greater than 100.00 g C/(m2•a)was 82,638.75 km2,accounting for 57.76%of the basin.The future trend of vegetation NPP was dominated by anti-continuity characteristic;the percentage of the area with anti-continuity characteristic was 63.57%.The area with a significant positive correlation between vegetation NPP and air temperature accounted for 53.74%of the regions that passed the significance test,while the area with a significant positive correlation between vegetation NPP and precipitation occupied 98.68%of the regions that passed the significance test.Hence,the effect of precipitation on vegetation NPP was greater than that of air temperature.The results of this study improve the understanding on the spatiotemporal variation of vegetation NPP in the Tarim River Basin and the impact of meteorological factors on vegetation NPP.
基金AV,MM,RS,AGT and NPK were supported by the COSMIC project through the Met Office Climate Science for Service Partnership(CSSP)China as part of the Newton Fund,contract number P106301.NPK was supported by a Natural Environmental Research Council(NERC)Independent Research Fellowship(NE/L010976/1)and by the ACREW programme of the National Centre for Atmospheric Science.We thank Omar V.MÜLLER for help with GloFAS-ERA5.
文摘Large parts of East and South Asia were affected by heavy precipitation and flooding during early summer 2020.This study provides both a statistical and dynamical characterization of rains and floods affecting the Yangtze River Basin(YRB).By aggregating daily and monthly precipitation over river basins across Asia,it is shown that the YRB is one of the areas that was particularly affected.June and July 2020 rainfall was higher than in the previous 20 years,and the YRB experienced anomalously high rainfall across most of its sub-basins.YRB discharge also attained levels not seen since 1998/1999.An automated method detecting the daily position of the East Asian Summer Monsoon Front(EASMF)is applied to show that the anomalously high YRB precipitation was associated with a halted northward progression of the EASMF and prolonged mei-yu conditions over the YRB lasting more than one month.Two 5-day heavy-precipitation episodes(12−16 June and 4−8 July 2020)are selected from this period for dynamical characterization,including Lagrangian trajectory analysis.Particular attention is devoted to the dynamics of the airstreams converging at the EASMF.Both episodes display heavy precipitation and convergence of monsoonal and subtropical air masses.However,clear differences are identified in the upper-level flow pattern,substantially affecting the balance of airmass advection towards the EASMF.This study contextualizes heavy precipitation in Asia in summer 2020 and showcases several analysis tools developed by the authors for the study of such events.
基金Supported by the National Key Research and Development Program of China(2018YFA0606301)National Natural Science Foundation of China(41875093,41705074,and 41530531).
文摘Sea surface temperature anomaly(SSTA)is a major signal for prediction of summer precipitation in East Asia.The relationship between SSTA in the tropical oceans and summer precipitation in East Asia has been documented in many studies.However,the relationship between SSTA and late summer(July–August)precipitation(JAP)over Northeast China(NEC)on the interannual timescale has received little attention.In this study,we examine the relationship between Indian Ocean Basin warming(IOBW)anomalies in spring and the JAP in NEC since the early1960 s.A significant positive correlation is found between the spring IOBW index and JAP over NEC.The positive spring IOBW anomaly is followed by an anomalous anticyclone from Northwest Pacific to the Korean Peninsula.This anomalous anticyclone favors a significantly strong and northward western Pacific subtropical high(WPSH),which facilitates anomalous southerly winds over NEC and the transport of more water vapor into this region.Further analysis indicates that the spring IOBW anomalies have important impacts on the vertical air motion in the tropics and subtropics during the summer.Significant anomalous upward(downward)motion covering Indonesia(Northwest Pacific to the southern Korean Peninsula)occurs when the IOBW is in its positive phase,which favors the northward movement of the WPSH in late summer and more precipitation over NEC in July–August.Modulation of the atmospheric circulation by this mechanism further influences the JAP over NEC.
基金supported by the National Basic Research Program of China (Grant No. 2006CB403404)the National Key Technology R&D Program of China (Grant No. 2007 BAC29B04)the National Science Foundation Program for Post-doctoral Scientists of China (Grant No. 20080440343)
文摘Hourly summer precipitation data recorded at 21 stations during 1961-2004 in the Haihe River Basin in North China were an alyzed. The results show that the precipitation frequency and amount and the morning peak mainly relating to longduratiol rainfall events decreased during this period, whereas the normalized afternoon peak mainly relating to short-duration event: increased, which may suggest that the proportion of short-duration rainfall has increased as the total summer rainfall has de creased. For short-duration events, the mean intensity and peak intensity increased at most stations and the time to peak inten sity decreased, which may be attributable to the higher thermal contrast between the warmer lower surface and cooler uppe level. In the case of long-duration events, the total amount was significantly correlated with the East Asian summer monsool index for the period 1961-2001 (correlation coefficient of 0.63). Although the total amount of rainfall in long-duration event: decreased in the basin, the mean intensity and peak intensity, as well as the extreme hourly precipitation, increased in the western basin and decreased in the eastern basin.