The spring atmospheric heat source(AHS)over the Tibetan Plateau(TP)has been suggested to affect the Asian summer monsoon and summer precipitation over South China.However,its influence on the summer precipitation in N...The spring atmospheric heat source(AHS)over the Tibetan Plateau(TP)has been suggested to affect the Asian summer monsoon and summer precipitation over South China.However,its influence on the summer precipitation in Northeast China(NEC)remains unknown.The connection between spring TP AHS and subsequent summer precipitation over NEC from 1961 to 2020 is analyzed in this study.Results illustrate that stronger spring TP AHS can enhance subsequent summer NEC precipitation,and higher soil moisture in the Yellow River Valley-North China region(YRVNC)acts as a bridge.During spring,the strong TP AHS could strengthen the transportation of water vapor to East China and lead to excessive rainfall in the YRVNC.Thus,soil moisture increases,which regulates local thermal conditions by decreasing local surface skin temperature and sensible heat.Owing to the memory of soil moisture,the lower spring sensible heat over the YRVNC can last until mid-summer,decrease the land–sea thermal contrast,and weaken the southerly winds over the East Asia–western Pacific region and convective activities over the South China Sea and tropical western Pacific.This modulates the East Asia–Pacific teleconnection pattern,which leads to a cyclonic anomaly and excessive summer precipitation over NEC.展开更多
Increasing the urban tree cover percentage(TCP) is widely recognized as an efficient way to mitigate the urban heat island effect. The cooling efficiency of urban trees can be either enhanced or attenuated on hotter d...Increasing the urban tree cover percentage(TCP) is widely recognized as an efficient way to mitigate the urban heat island effect. The cooling efficiency of urban trees can be either enhanced or attenuated on hotter days, depending on the physiological response of urban trees to rising ambient temperature. However, the response of urban trees' cooling efficiency to rising urban temperature remains poorly quantified for China's cities. In this study, we quantify the response of urban trees' cooling efficiency to rising urban temperature at noontime [~1330 LT(local time), LT=UTC+8] in 17summers(June, July, and August) from 2003–19 in 70 economically developed cities of China based on satellite observations. The results show that urban trees have stronger cooling efficiency with increasing temperature, suggesting additional cooling benefits provided by urban trees on hotter days. The enhanced cooling efficiency values of urban trees range from 0.002 to 0.055℃ %-1 per 1℃ increase in temperature across the selected cities, with larger values for the lowTCP-level cities. The response is also regulated by background temperature and precipitation, as the additional cooling benefit tends to be larger in warmer and wetter cities at the same TCP level. The positive response of urban trees' cooling efficiency to rising urban temperature is explained mainly by the stronger evapotranspiration of urban trees on hotter days.These results have important implications for alleviating urban heat risk by utilizing urban trees, particularly considering that extreme hot days are becoming more frequent in cities under global warming.展开更多
Latewood width(LWW)indices of trees are considered a reliable proxy of summer precipitation in the Northern Hemisphere.However,the strong coupling and high correlation between earlywood width(EWW)and LWW indices often...Latewood width(LWW)indices of trees are considered a reliable proxy of summer precipitation in the Northern Hemisphere.However,the strong coupling and high correlation between earlywood width(EWW)and LWW indices often prevent registration of climate signals of the LWW index.In this study,328-year-long earlywood width and latewood width chronologies were developed from Chinese pine at two sites in the Hasi Mountains,north central China.The climate responses of these chronologies were analyzed and the LWW index used to derive sum-mer precipitation signals.Correlation analyses showed that LWW was particularly influenced by earlywood growth and recorded stronger climate signals of the previous year as EWW,rather than those of the current year with infrequent summer climate signals.However,after removing the effect of earlywood growth using a simple regression model,the adjusted LWW chronology(LWW_(adj))showed a strong relationship with July precipitation in dry years.This suggests that the LWW_(adj) chronology has the potential to be used to investigate long-term variability in summer precipitation in drought-limited regions.展开更多
Using surface and balloon-sounding measurements, satellite retrievals, and ERA5 reanalysis during 2011–20, this study compares the precipitation and related wind dynamics, moisture and heat features in different area...Using surface and balloon-sounding measurements, satellite retrievals, and ERA5 reanalysis during 2011–20, this study compares the precipitation and related wind dynamics, moisture and heat features in different areas of the South China Sea(SCS) before and after SCS summer monsoon onset(SCSSMO). The rainy sea around Dongsha(hereafter simply referred to as Dongsha) near the north coast, and the rainless sea around Xisha(hereafter simply referred to as Xisha) in the western SCS, are selected as two typical research subregions. It is found that Dongsha, rather than Xisha, has an earlier and greater increase in precipitation after SCSSMO under the combined effect of strong low-level southwesterly winds, coastal terrain blocking and lifting, and northern cold air. When the 950-h Pa southwesterly winds enhance and advance northward, accompanied by strengthened moisture flux, there is a strong convergence of wind and moisture in Dongsha due to a sudden deceleration and rear-end collision of wind by coastal terrain blocking. Moist and warm advection over Dongsha enhances early and deepens up to 200 h Pa in association with the strengthened upward motion after SCSSMO, thereby providing ample moisture and heat to form strong precipitation. However, when the 950-h Pa southwesterly winds weaken and retreat southward, Xisha is located in a wind-break area where strong convergence and upward motion centers move in. The vertical moistening and heating by advection in Xisha enhance later and appear far weaker compared to that in Dongsha, consistent with later and weaker precipitation.展开更多
Background The aim of this experiment was to investigate the effect of different levels of betaine(Bet)inclusion in the diet on the intestinal health of growing rabbits under summer heat.A total of 100 weaned Qixing m...Background The aim of this experiment was to investigate the effect of different levels of betaine(Bet)inclusion in the diet on the intestinal health of growing rabbits under summer heat.A total of 100 weaned Qixing meat rabbits aged 35 d with body weight of 748.61±38.59 g were randomly divided into 5 treatment groups:control group(basal diet)and Bet groups(basal diet+0.75,1.0,1.5 or 2.0 g/kg Bet).The average daily temperature in the rabbitry during the experiment was 30.48°C and the relative humidity was 69.44%.Results Dietary addition of Bet had no significant effect on growth performance and health status of growing rabbits(P>0.05),but it increased ileal secretory immunoglobulin A content compared to the control under summer heat(P<0.05).Addition of 0.75 g/kg Bet up-regulated jejunal IL-4,down-regulated ileal TNF-αexpression(P<0.05).The addition of 1.0 g/kg Bet increased the villi height(VH)in the jejunum(P<0.05).Serum glucose levels were reduced,and the expression of SLC6A20 was up-regulated in jejunum and ileum of rabbits fed with 1.5 g/kg Bet(P<0.05).When added at 2.0 g/kg,Bet reduced serum HSP70 content,increased jejunal VH,and up-regulated duodenal SLC7A6,SLC38A2,mTOR and 4EBP-2 expression(P<0.05).Correlation analysis revealed that intestinal mTOR expression was significantly and positively correlated with SLC7A6,SLC38A2,SLC36A1 and IL-4 expression(P<0.05).Conclusions Dietary addition of Bet can up-regulate the expression of anti-inflammatory factors through the AAT/mTOR pathway,improve the intestinal immune function,alleviate intestinal damage in growing rabbits caused by summer heat,and improve intestinal health.展开更多
In the urban atmosphere of Bengaluru, various volatile organic compounds(VOCs), particularly Benzene,Toluene, Ethylbenzene, and Xylene(BTEX), have shown an increasing trend in concentration. The present research was c...In the urban atmosphere of Bengaluru, various volatile organic compounds(VOCs), particularly Benzene,Toluene, Ethylbenzene, and Xylene(BTEX), have shown an increasing trend in concentration. The present research was conducted during summer and monsoon seasons, focusing on Kadubeesanahalli, a high-traffic area within the Bengaluru Metropolitan City. Hourly sample data was collected using a BTEX analyzer(Model GC955-600) and subsequently transformed into daily, monthly, and seasonal values. The study revealed distinct patterns in benzene concentrations. Benzene levels were lowest during the early morning hours, specifically from 1:00 a.m.to 7:00 a.m.. Concentrations then increased from 7:00 a.m. to 9:00 a.m. and again from 4:00 p.m. to 11:00 p.m.,corresponding to the morning and evening peak traffic hours. However, between 10:00 a.m. and 4:00 p.m., the concentration decreased due to reduced traffic levels. These diurnal variations in benzene concentration are influenced by meteorological parameters. Comparing the two seasons, higher concentrations of Benzene, EthylBenzene, and MP-xylene were observed during the summer season. This increase is attributed to the elevated temperatures during summer, which promote the vaporization of BTEX compounds. Conversely, lower BTEX concentrations were recorded during the monsoon season due to the wet deposition process. The observed positive correlation(r > 0.5) among BTEX parameters strongly suggests a common source, most likely originating from vehicular emissions.展开更多
Negative Indian Ocean Dipole(nIOD)can exert great impacts on global climate and can also strongly influence the climate in China.Early nIOD is a major type of nIOD,which can induce more pronounced climate anomalies in...Negative Indian Ocean Dipole(nIOD)can exert great impacts on global climate and can also strongly influence the climate in China.Early nIOD is a major type of nIOD,which can induce more pronounced climate anomalies in summer than La Niña-related nIOD.However,the characteristics and triggering mechanisms of early nIOD are unclear.Our results based on reanalysis datasets indicate that the early nIOD and La Niña-related nIOD are the two major types of nIOD,and the former accounts for over one third of all the nIOD events in the past six decades.These two types of nIODs are similar in their intensities,but are different in their spatial patterns and seasonal cycles.The early nIOD,which develops in spring and peaks in summer,is one season earlier than the La Niña-related nIOD.The spatial pattern of the wind anomaly associated with early nIOD exhibits a winter monsoon-like pattern,with strong westerly anomalies in the equatorial Indian Ocean and eastly anomalies in the northern Indian Ocean.Opposite to the triggering mechanism of early positve IOD,the early nIOD is induced by delayed Indian summer monsoon onset.The results of this study are helpful for improving the prediction skill of IOD and its climate impacts.展开更多
[Objectives] This study was conducted to verify the field application effect of slow-release nitrogen fertilizer on summer maize in Shajiang black soil area by simultaneous sowing and fertilization, and explore the ap...[Objectives] This study was conducted to verify the field application effect of slow-release nitrogen fertilizer on summer maize in Shajiang black soil area by simultaneous sowing and fertilization, and explore the application scope and nitrogen metabolism mechanism, so as to lay a foundation for fertilizer reduction and efficiency improvement. [Methods] With maize variety Beiqing 340 and sulfur-coated urea as experimental materials, five nitrogen application levels were set, namely, control (C0), slow-release nitrogen 70 kg/hm^(2) (C70), slow-release nitrogen 140 kg/hm^(2) (C140), slow-release nitrogen 210 kg/hm^(2) (C210) and slow-release nitrogen 280 kg/hm^(2) (C280). The phosphorus and potassium fertilizers were all in accordance with the unified standard. [Results] With the application rate of slow-release nitrogen increasing, the nitrogen accumulation in organs increased first and then decreased after tasseling stage of maize. In order to reduce the fertilizing amount and increase efficiency, 210 kg/hm^(2) of slow-release nitrogen fertilizer was the best fertilizing amount for summer maize in Shajiang black soil area. [Conclusions] This study provides reference for fertilizer reduction, efficiency improvement and sustainable development of summer maize in Shajiang black soil area.展开更多
[Objectives]This study was conducted to investigate the effects of slow-release nitrogen fertilizer on dry matter accumulation and translocation of summer maize.[Methods]With Zhoudan 9 as the test variety,six differen...[Objectives]This study was conducted to investigate the effects of slow-release nitrogen fertilizer on dry matter accumulation and translocation of summer maize.[Methods]With Zhoudan 9 as the test variety,six different treatment were set up:blank control(CK1),slow-release urea 75 kg/hm^(2)(C1),slow-release urea 150 kg/hm^(2)(C2),slow-release urea 225 kg/hm^(2)(C3),slow-release urea 300 kg/hm^(2)(C4)and ordinary urea 300 kg/hm^(2)(CK2),to study the change law of dry matter accumulation and translocation in summer maize.[Results]Treatment slow-release urea 225 kg/hm^(2)(C4)showed summer maize yield,dry matter translocation between organs,grain contribution rate and proportion of grain dry matter in the full ripe stage higher than other treatments.Considering the weight loss and cost factors,slow-release urea 225 kg/hm^(2)(C3)could be recommended as the fertilizing amount for summer maize.[Conclusions]This study provides theoretical reference for rational selection of fertilizers for reducing fertilizer application and increasing fertilizer efficiency,and for production of summer maize in Shajiang black soil region.展开更多
Based on the reanalysis data of the National Center for Environmental Prediction(NCEP)and the precipitation dataset of the U.S.Climate Prediction Center(CPC),the changing trend of summer precipitation in North China(3...Based on the reanalysis data of the National Center for Environmental Prediction(NCEP)and the precipitation dataset of the U.S.Climate Prediction Center(CPC),the changing trend of summer precipitation in North China(35°-40°N,110°-125°E)during 1979-2020 was studied.By calculating the monthly climatic precipitation in North China,it is found that precipitation was mainly distributed from June to August,so the trend of precipitation in North China from June to August was mainly analyzed.Firstly,the five-point moving average of regional mean precipitation in North China from June to August during 1979-2020 was conducted.It is found that the fitting curve of the five-point sliding average was basically consistent with the changing trend of regional precipitation,and it showed a certain upward trend.Secondly,the cumulative anomaly of regional average summer precipitation in North China showed a significant upward trend after 2005,which was similar to the moving average result,indicating that the precipitation in the later period increased compared with the earlier period.The changing trend of summer precipitation in North China in the past 42 years was analyzed,and the results show that precipitation showed a significant increasing trend in most areas of North China,so that regional average precipitation also tended to increase significantly.By comparing the precipitation in the past five years(2016-2020)and the last 36 years(1979-2015),it is found that the increase of summer precipitation in North China was more obvious,so the reasons for the increase in precipitation were further analyzed.Since the occurrence of precipitation requires favorable thermal dynamic conditions,the one-dimensional linear regression of water vapor content at 850 hPa and meridional wind speed was conduced,and it is found that the two variables tended to increase obviously,which was consistent with the increasing trend of precipitation.Seen from both the results of regional average and the spatial distribution of trends,the lower atmospheric water vapor content and wind speed showed a significant positive trend,which led to the increase of summer precipitation.Therefore,it can be concluded that there was a certain changing trend of summer precipitation in North China in the past 42 years,which can provide certain reference for the future forecast of summer precipitation in North China.展开更多
Precipitation on the Tibetan Plateau(TP)has an important effect on the water supply and demand of the downstream population.Involving recent climate change,the multi-decadal variations of the impact of El Niño-So...Precipitation on the Tibetan Plateau(TP)has an important effect on the water supply and demand of the downstream population.Involving recent climate change,the multi-decadal variations of the impact of El Niño-Southern Oscillation(ENSO)events on regional climate were observed.In this work,the authors investigated the changes in summer precipitation over TP during 1950-2019.At the multi-decadal scale,the authors found that the inhabiting impact of El Niño events on the TP summer precipitation has strengthened since the late 1970s.The main factor contributing to this phenomenon is the significant amplification in the decadal amplitude of El Niño during 1978-2019 accompanied by a discernible escalation in the frequency of El Niño events.This phenomenon induces anomalous perturbations in sea surface temperatures(SST)within the tropical Indo-Pacific region,consequently weakening the atmospheric vapor transport from the western Pacific to the TP.Additionally,conspicuous anomalies in subsidence motion are observed longitudinally and latitudinally across the TP which significantly contributes to a curtailed supply of atmospheric moisture.These results bear profound implications for the multi-decadal prediction of the TP climate.展开更多
Seasonal prediction of summer precipitation over eastern China is closely linked to the East Asian monsoon circulation,which is largely affected by the El Niño-Southern Oscillation(ENSO).In this study,results sho...Seasonal prediction of summer precipitation over eastern China is closely linked to the East Asian monsoon circulation,which is largely affected by the El Niño-Southern Oscillation(ENSO).In this study,results show that spring soil moisture(SM)over the Indo-China peninsula(ICP)could be a reliable seasonal predictor for eastern China summer precipitation under non-ENSO conditions.When springtime SM anomalies are present over the ICP,they trigger a structured response in summertime precipitation over most of eastern China.The resultant south-to-north,tri-polar configuration of precipitation anomalies has a tendency to yield increased(decreased)precipitation in the Yangtze River basin and decreased(increased)in South and North China with a drier(wetter)spring soil condition in the ICP.The analyses show that ENSO exerts a powerful control on the East Asian circulation system in the ENSO-decaying summer.In the case of ENSO forcing,the seasonal predictability of the ICP spring SM for eastern China summer precipitation is suppressed.However,in the absence of the influence of ENSO sea surface temperature anomalies from the preceding winter,the SM anomalies over the ICP induce abnormal local heating and a consequent geopotential height response owing to its sustained control on local temperature,which could,in turn,lead to abnormal eastern China summer precipitation by affecting the East Asian summer monsoon circulation.The present findings provide a better understanding of the complexity of summer climate predictability over eastern China,which is of potential significance for improving the livelihood of the people.展开更多
The purpose of this study was to identify the physiological mechanism underlying the effects of high temperature and waterlogging on summer maize.The stem development and yield of the maize hybrid Denghai 605 in respo...The purpose of this study was to identify the physiological mechanism underlying the effects of high temperature and waterlogging on summer maize.The stem development and yield of the maize hybrid Denghai 605 in response to high-temperature stress,waterlogging stress,and their combination applied for six days at the third-leaf,sixth-leaf,and tasseling stages were recorded.The combined stresses reduced lignin biosynthetic enzyme activity and lignin accumulation,leading to abnormal stem development.Reduction of the area and number of vascular bundles in stems led to reduced dry matter accumulation and allocation.Decreased grain dry weight at all three stages reduced grain yield relative to a control.In summary,high temperature,waterlogging,and their combined stress impaired stem development and grain yield of summer maize.The combined stresses were more damaging than either stress alone.展开更多
Ammonia (NH_3) emissions should be mitigated to improve environmental quality.Croplands are one of the largest NH_3sources,they must be managed properly to reduce their emissions while achieving the target yields.Here...Ammonia (NH_3) emissions should be mitigated to improve environmental quality.Croplands are one of the largest NH_3sources,they must be managed properly to reduce their emissions while achieving the target yields.Herein,we report the NH_3 emissions,crop yield and changes in soil fertility in a long-term trial with various fertilization regimes,to explore whether NH_3 emissions can be significantly reduced using the 4R nutrient stewardship (4Rs),and its interaction with the organic amendments (i.e.,manure and straw) in a wheat–maize rotation.Implementing the 4Rs significantly reduced NH_3 emissions to 6 kg N ha~(–1) yr~(–1) and the emission factor to 1.72%,without compromising grain yield (12.37 Mg ha~(–1) yr~(–1))and soil fertility (soil organic carbon of 7.58 g kg~(–1)) compared to the conventional chemical N management.When using the 4R plus manure,NH_3 emissions (7 kg N ha~(–1) yr~(–1)) and the emission factor (1.74%) were as low as 4Rs,and grain yield and soil organic carbon increased to 14.79 Mg ha~(–1) yr~(–1) and 10.09 g kg~(–1),respectively.Partial manure substitution not only significantly reduced NH_3 emissions but also increased crop yields and improved soil fertility,compared to conventional chemical N management.Straw return exerted a minor effect on NH_3 emissions.These results highlight that 4R plus manure,which couples nitrogen and carbon management can help achieve both high yields and low environmental costs.展开更多
Studies of the multi-scale climate variability of the Asian monsoon are essential to an advanced understanding of the physical processes of the global climate system.In this paper,the progress achieved in this field i...Studies of the multi-scale climate variability of the Asian monsoon are essential to an advanced understanding of the physical processes of the global climate system.In this paper,the progress achieved in this field is systematically reviewed,with a focus on the past several years.The achievements are summarized into the following topics:(1)the onset of the South China Sea summer monsoon;(2)the East Asian summer monsoon;(3)the East Asian winter monsoon;and(4)the Indian summer monsoon.Specifically,new results are highlighted,including the advanced or delayed local monsoon onset tending to be synchronized over the Arabian Sea,Bay of Bengal,Indochina Peninsula,and South China Sea;the basic features of the record-breaking mei-yu in 2020,which have been extensively investigated with an emphasis on the role of multi-scale processes;the recovery of the East Asian winter monsoon intensity after the early 2000s in the presence of continuing greenhouse gas emissions,which is believed to have been dominated by internal climate variability(mostly the Arctic Oscillation);and the accelerated warming over South Asia,which exceeded the tropical Indian Ocean warming,is considered to be the main driver of the Indian summer monsoon rainfall recovery since 1999.A brief summary is provided in the final section along with some further discussion on future research directions regarding our understanding of the Asian monsoon variability.展开更多
The interannual meridional displacement of the upper-tropospheric westerly jet over the eastern portion of East Asia in summer has been well documented.This study,however,investigates the interannual meridional displa...The interannual meridional displacement of the upper-tropospheric westerly jet over the eastern portion of East Asia in summer has been well documented.This study,however,investigates the interannual meridional displacement of the westerly jet over the western portion of East Asia in summer,which is distinct from its eastern counterpart.The results show that the meridional displacement of the western East Asian jet shows a clear asymmetric feature;that is,there are remarkable differences between the southward and northward displacement of the jet.The southward displacement of the jet corresponds to suppressed convection in the tropical western North Pacific and Maritime Continent and enhanced convection in the equatorial Pacific,which can be explained by the warmer sea surfaces found in the northern Indian Ocean and equatorial eastern Pacific.These tropical anomalies somewhat resemble those associated with the eastern East Asian jet variability.However,the northward displacement of the western East Asian jet does not correspond to significant convection and SST anomalies in the entire tropics;instead,the northward displacement of the jet corresponds well to the positive phase of the Arctic Oscillation.Furthermore,the meridional displacement of the western jet has asymmetric impacts on rainfall and surface air temperatures in East Asia.When the western jet shifts northward,more precipitation is found over South China and Northeast China,and higher temperatures appear in northern China.By contrast,when the jet shifts southward,more precipitation appears over the East Asian rainy belt,including the Yangtze River valley,South Korea,and southern and central Japan and warmer temperatures are found South and Southeast Asia.展开更多
Based on the data of tidal currents and suspended sediment concentrations observed synchronously at 11 stations in the Bohai Strait lasting for 25 hours,the temporal and spatial variations of currents and suspended se...Based on the data of tidal currents and suspended sediment concentrations observed synchronously at 11 stations in the Bohai Strait lasting for 25 hours,the temporal and spatial variations of currents and suspended sediment concentrations in the Bohai Strait in summer were analyzed.The Study preliminarily discussed the transport mechanism,transport trend and transport flux of suspended sediments in summer,using flux-mechanism decomposition method and numerical simulation.The suspended sediment transport was mainly controlled by advection and next influenced by vertical net circulation,while resuspension is relatively weak in Bohai Strait.The single-width fluxes of investigation stations varied from 3.8 to 89.1 gm^(−1) s^(−1),with the maximum value in Miaodao Strait.The suspended sediment transport trends in Laotieshan channel along the vertical section are obviously distinct.The waters mainly flow out of the Bohai Sea in surface layer,while into the Bohai Sea in bottom layer.However,the transport trends of other channels in the centre and south are consistent vertically.The sediments in the Bohai Strait follows the transport pattern of moving outward from the south and inward from the north in summer,i.e.,the sediments are carried out of the Bohai Sea through the Laotieshan channel,while into the Bohai Sea through other channels.And the outflow flux exceeds the inflow flux in August with the net water flux of 1.4×10^(10)m^(3),basically same as the deliveries of the rivers into the Bohai Sea.Moreover,the suspended sediment flux is 0.33 Mt under the action of tidal residual currents in the Yellow Sea in August.展开更多
Variability in the East Asian summer monsoon(EASM)brings the risk of heavy flooding or drought to the Yangtze River basin,with potentially devastating impacts.Early forecasts of the likelihood of enhanced or reduced m...Variability in the East Asian summer monsoon(EASM)brings the risk of heavy flooding or drought to the Yangtze River basin,with potentially devastating impacts.Early forecasts of the likelihood of enhanced or reduced monsoon rainfall can enable better management of water and hydropower resources by decision-makers,supporting livelihoods and major economic and population centres across eastern China.This paper demonstrates that the EASM is predictable in a dynamical forecast model from the preceding November,and that this allows skilful forecasts of summer mean rainfall in the Yangtze River basin at a lead time of six months.The skill for May–June–July rainfall is of a similar magnitude to seasonal forecasts initialised in spring,although the skill in June–July–August is much weaker and not consistently significant.However,there is some evidence for enhanced skill following El Niño events.The potential for decadal-scale variability in forecast skill is also examined,although we find no evidence for significant variation.展开更多
This study identifies break events of the South China Sea(SCS)summer monsoon(SCSSM)based on 42 years of data from 1979 to 2020,and investigates their statistical characteristics and associated atmospheric anomalies.A ...This study identifies break events of the South China Sea(SCS)summer monsoon(SCSSM)based on 42 years of data from 1979 to 2020,and investigates their statistical characteristics and associated atmospheric anomalies.A total of 214 break events are identified by examining the convection evolution during each monsoon season.It is found that most events occur between June and September and show a roughly even distribution.Short-lived events(3–7 days)are more frequent,accounting for about two thirds of total events,with the residual one third for long-lived events(8–24 days).The SCSSM break is featured by drastic variations in various atmospheric variables.Particularly,the convection and precipitation change from anomalous enhancement in adjoining periods to a substantial suppression during the break,with the differences being more than 60 W m−2 for outgoing longwave radiation(OLR)and 10 mm d−1 for precipitation.This convection/precipitation suppression is accompanied by an anomalous anticyclone in the lower troposphere,corresponding to a remarkable westward retreat of the monsoon trough from the Philippine Sea to the Indochina Peninsula,which reduces the transportation of water vapor into the SCS.Besides,the pseudo-equivalent potential temperature()declines sharply,mainly attributable to the local specific humidity reduction caused by downward dry advection.Furthermore,it is found that the suppressed convection and anomalous anticyclone responsible for the monsoon break form near the equatorial western Pacific and then propagate northwestward to the SCS.展开更多
基金supported by the Open Research Fund of TPESER(Grant No.TPESER202205)the Second Tibetan Plateau Scientific Expedition and Research Program(Grant No.2019QZKK0101)。
文摘The spring atmospheric heat source(AHS)over the Tibetan Plateau(TP)has been suggested to affect the Asian summer monsoon and summer precipitation over South China.However,its influence on the summer precipitation in Northeast China(NEC)remains unknown.The connection between spring TP AHS and subsequent summer precipitation over NEC from 1961 to 2020 is analyzed in this study.Results illustrate that stronger spring TP AHS can enhance subsequent summer NEC precipitation,and higher soil moisture in the Yellow River Valley-North China region(YRVNC)acts as a bridge.During spring,the strong TP AHS could strengthen the transportation of water vapor to East China and lead to excessive rainfall in the YRVNC.Thus,soil moisture increases,which regulates local thermal conditions by decreasing local surface skin temperature and sensible heat.Owing to the memory of soil moisture,the lower spring sensible heat over the YRVNC can last until mid-summer,decrease the land–sea thermal contrast,and weaken the southerly winds over the East Asia–western Pacific region and convective activities over the South China Sea and tropical western Pacific.This modulates the East Asia–Pacific teleconnection pattern,which leads to a cyclonic anomaly and excessive summer precipitation over NEC.
基金supported by the Natural Science Foundation of Jiangsu Province (Grant No. BK20240170)Open fund by Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (KHK2203)+2 种基金the Jiangsu Meteorological Bureau Youth Fund (KQ202314)the Fundamental Research Funds for the Central Universities (2024300330)Jiangsu Collaborative Innovation Center for Climate Change。
文摘Increasing the urban tree cover percentage(TCP) is widely recognized as an efficient way to mitigate the urban heat island effect. The cooling efficiency of urban trees can be either enhanced or attenuated on hotter days, depending on the physiological response of urban trees to rising ambient temperature. However, the response of urban trees' cooling efficiency to rising urban temperature remains poorly quantified for China's cities. In this study, we quantify the response of urban trees' cooling efficiency to rising urban temperature at noontime [~1330 LT(local time), LT=UTC+8] in 17summers(June, July, and August) from 2003–19 in 70 economically developed cities of China based on satellite observations. The results show that urban trees have stronger cooling efficiency with increasing temperature, suggesting additional cooling benefits provided by urban trees on hotter days. The enhanced cooling efficiency values of urban trees range from 0.002 to 0.055℃ %-1 per 1℃ increase in temperature across the selected cities, with larger values for the lowTCP-level cities. The response is also regulated by background temperature and precipitation, as the additional cooling benefit tends to be larger in warmer and wetter cities at the same TCP level. The positive response of urban trees' cooling efficiency to rising urban temperature is explained mainly by the stronger evapotranspiration of urban trees on hotter days.These results have important implications for alleviating urban heat risk by utilizing urban trees, particularly considering that extreme hot days are becoming more frequent in cities under global warming.
基金supportedbytheNational Natural Science Foundation of China (No.U21A2006 and 42001043).
文摘Latewood width(LWW)indices of trees are considered a reliable proxy of summer precipitation in the Northern Hemisphere.However,the strong coupling and high correlation between earlywood width(EWW)and LWW indices often prevent registration of climate signals of the LWW index.In this study,328-year-long earlywood width and latewood width chronologies were developed from Chinese pine at two sites in the Hasi Mountains,north central China.The climate responses of these chronologies were analyzed and the LWW index used to derive sum-mer precipitation signals.Correlation analyses showed that LWW was particularly influenced by earlywood growth and recorded stronger climate signals of the previous year as EWW,rather than those of the current year with infrequent summer climate signals.However,after removing the effect of earlywood growth using a simple regression model,the adjusted LWW chronology(LWW_(adj))showed a strong relationship with July precipitation in dry years.This suggests that the LWW_(adj) chronology has the potential to be used to investigate long-term variability in summer precipitation in drought-limited regions.
基金supported by a Guangdong Major Project of Basic and Applied Basic Research (Grant No.2020B0301030004)the Collaborative Observation and Multisource Real-time Data Fusion and Analysis Technology & Innovation team (Grant No.GRMCTD202103)the Foshan Special Project on Science and Technology in Social Field (Grant No.2120001008761)。
文摘Using surface and balloon-sounding measurements, satellite retrievals, and ERA5 reanalysis during 2011–20, this study compares the precipitation and related wind dynamics, moisture and heat features in different areas of the South China Sea(SCS) before and after SCS summer monsoon onset(SCSSMO). The rainy sea around Dongsha(hereafter simply referred to as Dongsha) near the north coast, and the rainless sea around Xisha(hereafter simply referred to as Xisha) in the western SCS, are selected as two typical research subregions. It is found that Dongsha, rather than Xisha, has an earlier and greater increase in precipitation after SCSSMO under the combined effect of strong low-level southwesterly winds, coastal terrain blocking and lifting, and northern cold air. When the 950-h Pa southwesterly winds enhance and advance northward, accompanied by strengthened moisture flux, there is a strong convergence of wind and moisture in Dongsha due to a sudden deceleration and rear-end collision of wind by coastal terrain blocking. Moist and warm advection over Dongsha enhances early and deepens up to 200 h Pa in association with the strengthened upward motion after SCSSMO, thereby providing ample moisture and heat to form strong precipitation. However, when the 950-h Pa southwesterly winds weaken and retreat southward, Xisha is located in a wind-break area where strong convergence and upward motion centers move in. The vertical moistening and heating by advection in Xisha enhance later and appear far weaker compared to that in Dongsha, consistent with later and weaker precipitation.
文摘Background The aim of this experiment was to investigate the effect of different levels of betaine(Bet)inclusion in the diet on the intestinal health of growing rabbits under summer heat.A total of 100 weaned Qixing meat rabbits aged 35 d with body weight of 748.61±38.59 g were randomly divided into 5 treatment groups:control group(basal diet)and Bet groups(basal diet+0.75,1.0,1.5 or 2.0 g/kg Bet).The average daily temperature in the rabbitry during the experiment was 30.48°C and the relative humidity was 69.44%.Results Dietary addition of Bet had no significant effect on growth performance and health status of growing rabbits(P>0.05),but it increased ileal secretory immunoglobulin A content compared to the control under summer heat(P<0.05).Addition of 0.75 g/kg Bet up-regulated jejunal IL-4,down-regulated ileal TNF-αexpression(P<0.05).The addition of 1.0 g/kg Bet increased the villi height(VH)in the jejunum(P<0.05).Serum glucose levels were reduced,and the expression of SLC6A20 was up-regulated in jejunum and ileum of rabbits fed with 1.5 g/kg Bet(P<0.05).When added at 2.0 g/kg,Bet reduced serum HSP70 content,increased jejunal VH,and up-regulated duodenal SLC7A6,SLC38A2,mTOR and 4EBP-2 expression(P<0.05).Correlation analysis revealed that intestinal mTOR expression was significantly and positively correlated with SLC7A6,SLC38A2,SLC36A1 and IL-4 expression(P<0.05).Conclusions Dietary addition of Bet can up-regulate the expression of anti-inflammatory factors through the AAT/mTOR pathway,improve the intestinal immune function,alleviate intestinal damage in growing rabbits caused by summer heat,and improve intestinal health.
文摘In the urban atmosphere of Bengaluru, various volatile organic compounds(VOCs), particularly Benzene,Toluene, Ethylbenzene, and Xylene(BTEX), have shown an increasing trend in concentration. The present research was conducted during summer and monsoon seasons, focusing on Kadubeesanahalli, a high-traffic area within the Bengaluru Metropolitan City. Hourly sample data was collected using a BTEX analyzer(Model GC955-600) and subsequently transformed into daily, monthly, and seasonal values. The study revealed distinct patterns in benzene concentrations. Benzene levels were lowest during the early morning hours, specifically from 1:00 a.m.to 7:00 a.m.. Concentrations then increased from 7:00 a.m. to 9:00 a.m. and again from 4:00 p.m. to 11:00 p.m.,corresponding to the morning and evening peak traffic hours. However, between 10:00 a.m. and 4:00 p.m., the concentration decreased due to reduced traffic levels. These diurnal variations in benzene concentration are influenced by meteorological parameters. Comparing the two seasons, higher concentrations of Benzene, EthylBenzene, and MP-xylene were observed during the summer season. This increase is attributed to the elevated temperatures during summer, which promote the vaporization of BTEX compounds. Conversely, lower BTEX concentrations were recorded during the monsoon season due to the wet deposition process. The observed positive correlation(r > 0.5) among BTEX parameters strongly suggests a common source, most likely originating from vehicular emissions.
基金The Basic Scientific Fund for National Public Research Institutes of China under contract No.2022S02the National Natural Science Foundation of China under contract No.41976021.
文摘Negative Indian Ocean Dipole(nIOD)can exert great impacts on global climate and can also strongly influence the climate in China.Early nIOD is a major type of nIOD,which can induce more pronounced climate anomalies in summer than La Niña-related nIOD.However,the characteristics and triggering mechanisms of early nIOD are unclear.Our results based on reanalysis datasets indicate that the early nIOD and La Niña-related nIOD are the two major types of nIOD,and the former accounts for over one third of all the nIOD events in the past six decades.These two types of nIODs are similar in their intensities,but are different in their spatial patterns and seasonal cycles.The early nIOD,which develops in spring and peaks in summer,is one season earlier than the La Niña-related nIOD.The spatial pattern of the wind anomaly associated with early nIOD exhibits a winter monsoon-like pattern,with strong westerly anomalies in the equatorial Indian Ocean and eastly anomalies in the northern Indian Ocean.Opposite to the triggering mechanism of early positve IOD,the early nIOD is induced by delayed Indian summer monsoon onset.The results of this study are helpful for improving the prediction skill of IOD and its climate impacts.
基金Supported by National Key Research and Development Program of China(2017FYD0101406)Zhoukou Comprehensive Test Station of Henan Provincial Corn Industry Technology System(HARS-22-02-Z5)。
文摘[Objectives] This study was conducted to verify the field application effect of slow-release nitrogen fertilizer on summer maize in Shajiang black soil area by simultaneous sowing and fertilization, and explore the application scope and nitrogen metabolism mechanism, so as to lay a foundation for fertilizer reduction and efficiency improvement. [Methods] With maize variety Beiqing 340 and sulfur-coated urea as experimental materials, five nitrogen application levels were set, namely, control (C0), slow-release nitrogen 70 kg/hm^(2) (C70), slow-release nitrogen 140 kg/hm^(2) (C140), slow-release nitrogen 210 kg/hm^(2) (C210) and slow-release nitrogen 280 kg/hm^(2) (C280). The phosphorus and potassium fertilizers were all in accordance with the unified standard. [Results] With the application rate of slow-release nitrogen increasing, the nitrogen accumulation in organs increased first and then decreased after tasseling stage of maize. In order to reduce the fertilizing amount and increase efficiency, 210 kg/hm^(2) of slow-release nitrogen fertilizer was the best fertilizing amount for summer maize in Shajiang black soil area. [Conclusions] This study provides reference for fertilizer reduction, efficiency improvement and sustainable development of summer maize in Shajiang black soil area.
文摘[Objectives]This study was conducted to investigate the effects of slow-release nitrogen fertilizer on dry matter accumulation and translocation of summer maize.[Methods]With Zhoudan 9 as the test variety,six different treatment were set up:blank control(CK1),slow-release urea 75 kg/hm^(2)(C1),slow-release urea 150 kg/hm^(2)(C2),slow-release urea 225 kg/hm^(2)(C3),slow-release urea 300 kg/hm^(2)(C4)and ordinary urea 300 kg/hm^(2)(CK2),to study the change law of dry matter accumulation and translocation in summer maize.[Results]Treatment slow-release urea 225 kg/hm^(2)(C4)showed summer maize yield,dry matter translocation between organs,grain contribution rate and proportion of grain dry matter in the full ripe stage higher than other treatments.Considering the weight loss and cost factors,slow-release urea 225 kg/hm^(2)(C3)could be recommended as the fertilizing amount for summer maize.[Conclusions]This study provides theoretical reference for rational selection of fertilizers for reducing fertilizer application and increasing fertilizer efficiency,and for production of summer maize in Shajiang black soil region.
文摘Based on the reanalysis data of the National Center for Environmental Prediction(NCEP)and the precipitation dataset of the U.S.Climate Prediction Center(CPC),the changing trend of summer precipitation in North China(35°-40°N,110°-125°E)during 1979-2020 was studied.By calculating the monthly climatic precipitation in North China,it is found that precipitation was mainly distributed from June to August,so the trend of precipitation in North China from June to August was mainly analyzed.Firstly,the five-point moving average of regional mean precipitation in North China from June to August during 1979-2020 was conducted.It is found that the fitting curve of the five-point sliding average was basically consistent with the changing trend of regional precipitation,and it showed a certain upward trend.Secondly,the cumulative anomaly of regional average summer precipitation in North China showed a significant upward trend after 2005,which was similar to the moving average result,indicating that the precipitation in the later period increased compared with the earlier period.The changing trend of summer precipitation in North China in the past 42 years was analyzed,and the results show that precipitation showed a significant increasing trend in most areas of North China,so that regional average precipitation also tended to increase significantly.By comparing the precipitation in the past five years(2016-2020)and the last 36 years(1979-2015),it is found that the increase of summer precipitation in North China was more obvious,so the reasons for the increase in precipitation were further analyzed.Since the occurrence of precipitation requires favorable thermal dynamic conditions,the one-dimensional linear regression of water vapor content at 850 hPa and meridional wind speed was conduced,and it is found that the two variables tended to increase obviously,which was consistent with the increasing trend of precipitation.Seen from both the results of regional average and the spatial distribution of trends,the lower atmospheric water vapor content and wind speed showed a significant positive trend,which led to the increase of summer precipitation.Therefore,it can be concluded that there was a certain changing trend of summer precipitation in North China in the past 42 years,which can provide certain reference for the future forecast of summer precipitation in North China.
基金This research was funded by the Second Tibetan Plateau Scientific Expedition and Research(STEP)program(2019QZKK0105)the Shenzhen Science and Technology Program(JCYJ20210324131810029)+2 种基金the National Natural Science Foundation of China(72293604,42275017)the Guangdong Provincial College Innovation Team Project(060313452101)the Program for scientific research start-up funds of Guangdong Ocean University(R17056).
文摘Precipitation on the Tibetan Plateau(TP)has an important effect on the water supply and demand of the downstream population.Involving recent climate change,the multi-decadal variations of the impact of El Niño-Southern Oscillation(ENSO)events on regional climate were observed.In this work,the authors investigated the changes in summer precipitation over TP during 1950-2019.At the multi-decadal scale,the authors found that the inhabiting impact of El Niño events on the TP summer precipitation has strengthened since the late 1970s.The main factor contributing to this phenomenon is the significant amplification in the decadal amplitude of El Niño during 1978-2019 accompanied by a discernible escalation in the frequency of El Niño events.This phenomenon induces anomalous perturbations in sea surface temperatures(SST)within the tropical Indo-Pacific region,consequently weakening the atmospheric vapor transport from the western Pacific to the TP.Additionally,conspicuous anomalies in subsidence motion are observed longitudinally and latitudinally across the TP which significantly contributes to a curtailed supply of atmospheric moisture.These results bear profound implications for the multi-decadal prediction of the TP climate.
基金supported by the National Natural Science Foundation of China (Grant No. 41831175)the Fundamental Research Funds for the Central Universities (Grant No. B210201029)+2 种基金the Key Scientific and Technological Project of the Ministry of Water Resources, P. R. China (SKS2022001)the Joint Open Project of the KLME and CIC-FEMD (Grant No. KLME202202)the Open Research Fund of the State Key Laboratory of Tropical Oceanography (South China Sea Institute of Oceanology, Chinese Academy of Sciences) (Grant No. LTO2110)
文摘Seasonal prediction of summer precipitation over eastern China is closely linked to the East Asian monsoon circulation,which is largely affected by the El Niño-Southern Oscillation(ENSO).In this study,results show that spring soil moisture(SM)over the Indo-China peninsula(ICP)could be a reliable seasonal predictor for eastern China summer precipitation under non-ENSO conditions.When springtime SM anomalies are present over the ICP,they trigger a structured response in summertime precipitation over most of eastern China.The resultant south-to-north,tri-polar configuration of precipitation anomalies has a tendency to yield increased(decreased)precipitation in the Yangtze River basin and decreased(increased)in South and North China with a drier(wetter)spring soil condition in the ICP.The analyses show that ENSO exerts a powerful control on the East Asian circulation system in the ENSO-decaying summer.In the case of ENSO forcing,the seasonal predictability of the ICP spring SM for eastern China summer precipitation is suppressed.However,in the absence of the influence of ENSO sea surface temperature anomalies from the preceding winter,the SM anomalies over the ICP induce abnormal local heating and a consequent geopotential height response owing to its sustained control on local temperature,which could,in turn,lead to abnormal eastern China summer precipitation by affecting the East Asian summer monsoon circulation.The present findings provide a better understanding of the complexity of summer climate predictability over eastern China,which is of potential significance for improving the livelihood of the people.
基金supported by the University Youth Innovation Science and Technology Support Program of Shandong Province(2021KJ073)the Postdoctoral Innovation Program of Shandong Province(202003039)China Agriculture Research System(CARS-02-21).
文摘The purpose of this study was to identify the physiological mechanism underlying the effects of high temperature and waterlogging on summer maize.The stem development and yield of the maize hybrid Denghai 605 in response to high-temperature stress,waterlogging stress,and their combination applied for six days at the third-leaf,sixth-leaf,and tasseling stages were recorded.The combined stresses reduced lignin biosynthetic enzyme activity and lignin accumulation,leading to abnormal stem development.Reduction of the area and number of vascular bundles in stems led to reduced dry matter accumulation and allocation.Decreased grain dry weight at all three stages reduced grain yield relative to a control.In summary,high temperature,waterlogging,and their combined stress impaired stem development and grain yield of summer maize.The combined stresses were more damaging than either stress alone.
基金supported by the Hainan Key Research and Development Project, China (ZDYF2021XDNY184)the Hainan Provincial Natural Science Foundation of China (422RC597)+2 种基金the National Natural Science Foundation of China (41830751)the Hainan Major Science and Technology Program, China (ZDKJ2021008)the Hainan University Startup Fund,China (KYQD(ZR)-20098)。
文摘Ammonia (NH_3) emissions should be mitigated to improve environmental quality.Croplands are one of the largest NH_3sources,they must be managed properly to reduce their emissions while achieving the target yields.Herein,we report the NH_3 emissions,crop yield and changes in soil fertility in a long-term trial with various fertilization regimes,to explore whether NH_3 emissions can be significantly reduced using the 4R nutrient stewardship (4Rs),and its interaction with the organic amendments (i.e.,manure and straw) in a wheat–maize rotation.Implementing the 4Rs significantly reduced NH_3 emissions to 6 kg N ha~(–1) yr~(–1) and the emission factor to 1.72%,without compromising grain yield (12.37 Mg ha~(–1) yr~(–1))and soil fertility (soil organic carbon of 7.58 g kg~(–1)) compared to the conventional chemical N management.When using the 4R plus manure,NH_3 emissions (7 kg N ha~(–1) yr~(–1)) and the emission factor (1.74%) were as low as 4Rs,and grain yield and soil organic carbon increased to 14.79 Mg ha~(–1) yr~(–1) and 10.09 g kg~(–1),respectively.Partial manure substitution not only significantly reduced NH_3 emissions but also increased crop yields and improved soil fertility,compared to conventional chemical N management.Straw return exerted a minor effect on NH_3 emissions.These results highlight that 4R plus manure,which couples nitrogen and carbon management can help achieve both high yields and low environmental costs.
基金study was supported by the National Natural Science Foundation of China(Grant Nos.42230605 and 41721004).
文摘Studies of the multi-scale climate variability of the Asian monsoon are essential to an advanced understanding of the physical processes of the global climate system.In this paper,the progress achieved in this field is systematically reviewed,with a focus on the past several years.The achievements are summarized into the following topics:(1)the onset of the South China Sea summer monsoon;(2)the East Asian summer monsoon;(3)the East Asian winter monsoon;and(4)the Indian summer monsoon.Specifically,new results are highlighted,including the advanced or delayed local monsoon onset tending to be synchronized over the Arabian Sea,Bay of Bengal,Indochina Peninsula,and South China Sea;the basic features of the record-breaking mei-yu in 2020,which have been extensively investigated with an emphasis on the role of multi-scale processes;the recovery of the East Asian winter monsoon intensity after the early 2000s in the presence of continuing greenhouse gas emissions,which is believed to have been dominated by internal climate variability(mostly the Arctic Oscillation);and the accelerated warming over South Asia,which exceeded the tropical Indian Ocean warming,is considered to be the main driver of the Indian summer monsoon rainfall recovery since 1999.A brief summary is provided in the final section along with some further discussion on future research directions regarding our understanding of the Asian monsoon variability.
基金supported by the National Natural Science Foundation of China(Grant Nos.42130504 and 42275031)。
文摘The interannual meridional displacement of the upper-tropospheric westerly jet over the eastern portion of East Asia in summer has been well documented.This study,however,investigates the interannual meridional displacement of the westerly jet over the western portion of East Asia in summer,which is distinct from its eastern counterpart.The results show that the meridional displacement of the western East Asian jet shows a clear asymmetric feature;that is,there are remarkable differences between the southward and northward displacement of the jet.The southward displacement of the jet corresponds to suppressed convection in the tropical western North Pacific and Maritime Continent and enhanced convection in the equatorial Pacific,which can be explained by the warmer sea surfaces found in the northern Indian Ocean and equatorial eastern Pacific.These tropical anomalies somewhat resemble those associated with the eastern East Asian jet variability.However,the northward displacement of the western East Asian jet does not correspond to significant convection and SST anomalies in the entire tropics;instead,the northward displacement of the jet corresponds well to the positive phase of the Arctic Oscillation.Furthermore,the meridional displacement of the western jet has asymmetric impacts on rainfall and surface air temperatures in East Asia.When the western jet shifts northward,more precipitation is found over South China and Northeast China,and higher temperatures appear in northern China.By contrast,when the jet shifts southward,more precipitation appears over the East Asian rainy belt,including the Yangtze River valley,South Korea,and southern and central Japan and warmer temperatures are found South and Southeast Asia.
基金jointly funded by the Shandong Provincial Natural Science Foundation,China(No.ZR2019 MD037)the National Natural Science Foundation of China(No.41776059).
文摘Based on the data of tidal currents and suspended sediment concentrations observed synchronously at 11 stations in the Bohai Strait lasting for 25 hours,the temporal and spatial variations of currents and suspended sediment concentrations in the Bohai Strait in summer were analyzed.The Study preliminarily discussed the transport mechanism,transport trend and transport flux of suspended sediments in summer,using flux-mechanism decomposition method and numerical simulation.The suspended sediment transport was mainly controlled by advection and next influenced by vertical net circulation,while resuspension is relatively weak in Bohai Strait.The single-width fluxes of investigation stations varied from 3.8 to 89.1 gm^(−1) s^(−1),with the maximum value in Miaodao Strait.The suspended sediment transport trends in Laotieshan channel along the vertical section are obviously distinct.The waters mainly flow out of the Bohai Sea in surface layer,while into the Bohai Sea in bottom layer.However,the transport trends of other channels in the centre and south are consistent vertically.The sediments in the Bohai Strait follows the transport pattern of moving outward from the south and inward from the north in summer,i.e.,the sediments are carried out of the Bohai Sea through the Laotieshan channel,while into the Bohai Sea through other channels.And the outflow flux exceeds the inflow flux in August with the net water flux of 1.4×10^(10)m^(3),basically same as the deliveries of the rivers into the Bohai Sea.Moreover,the suspended sediment flux is 0.33 Mt under the action of tidal residual currents in the Yellow Sea in August.
基金supported by the UK–China Research & Innovation Partnership Fund through the Met Office Climate Science for Service Partnership (CSSP) China as part of the Newton Fund
文摘Variability in the East Asian summer monsoon(EASM)brings the risk of heavy flooding or drought to the Yangtze River basin,with potentially devastating impacts.Early forecasts of the likelihood of enhanced or reduced monsoon rainfall can enable better management of water and hydropower resources by decision-makers,supporting livelihoods and major economic and population centres across eastern China.This paper demonstrates that the EASM is predictable in a dynamical forecast model from the preceding November,and that this allows skilful forecasts of summer mean rainfall in the Yangtze River basin at a lead time of six months.The skill for May–June–July rainfall is of a similar magnitude to seasonal forecasts initialised in spring,although the skill in June–July–August is much weaker and not consistently significant.However,there is some evidence for enhanced skill following El Niño events.The potential for decadal-scale variability in forecast skill is also examined,although we find no evidence for significant variation.
基金supported by the National Natural Science Foundation of China(Grant No.42275025).
文摘This study identifies break events of the South China Sea(SCS)summer monsoon(SCSSM)based on 42 years of data from 1979 to 2020,and investigates their statistical characteristics and associated atmospheric anomalies.A total of 214 break events are identified by examining the convection evolution during each monsoon season.It is found that most events occur between June and September and show a roughly even distribution.Short-lived events(3–7 days)are more frequent,accounting for about two thirds of total events,with the residual one third for long-lived events(8–24 days).The SCSSM break is featured by drastic variations in various atmospheric variables.Particularly,the convection and precipitation change from anomalous enhancement in adjoining periods to a substantial suppression during the break,with the differences being more than 60 W m−2 for outgoing longwave radiation(OLR)and 10 mm d−1 for precipitation.This convection/precipitation suppression is accompanied by an anomalous anticyclone in the lower troposphere,corresponding to a remarkable westward retreat of the monsoon trough from the Philippine Sea to the Indochina Peninsula,which reduces the transportation of water vapor into the SCS.Besides,the pseudo-equivalent potential temperature()declines sharply,mainly attributable to the local specific humidity reduction caused by downward dry advection.Furthermore,it is found that the suppressed convection and anomalous anticyclone responsible for the monsoon break form near the equatorial western Pacific and then propagate northwestward to the SCS.