Sums of convergent series for any desired number of terms, which may be infinite, are estimated very accurately by establishing definite rational polynomials. For infinite number of terms the sum infinite is obtained ...Sums of convergent series for any desired number of terms, which may be infinite, are estimated very accurately by establishing definite rational polynomials. For infinite number of terms the sum infinite is obtained by taking the asymptotic limit of the rational polynomial. A rational function with second-degree polynomials both in the numerator and denominator is found to produce excellent results. Sums of series with different characteristics such as alternating signs are considered for testing the performance of the proposed approach.展开更多
Consider a sequence of i.i.d.positive random variables.An universal result in almost sure limit theorem for products of sums of partial sums is established.We will show that the almost sure limit theorem holds under a...Consider a sequence of i.i.d.positive random variables.An universal result in almost sure limit theorem for products of sums of partial sums is established.We will show that the almost sure limit theorem holds under a fairly general condition on the weight dk= k-1 exp(lnβk),0≤β〈1.And in a sense,our results have reached the optimal form.展开更多
In this paper, strong laws of large numbers for weighted sums of ■-mixing sequence are investigated. Our results extend the corresponding results for negatively associated sequence to the case of ■-mixing sequence.
In this article, the author establishes the strong laws for linear statistics that are weighted sums of a m-negatively associated(m-NA) random sample. The obtained results extend and improve the result of Qiu and Yang...In this article, the author establishes the strong laws for linear statistics that are weighted sums of a m-negatively associated(m-NA) random sample. The obtained results extend and improve the result of Qiu and Yang in [1] to m-NA random variables.展开更多
Zhao (2003a) first established a congruence for any odd prime p〉3, S(1,1,1 ;p)=-2Bp-3 (mod p), which holds when p=3 evidently. In this paper, we consider finite triple harmonic sum S(α,β, γ,ρ) (modp) is...Zhao (2003a) first established a congruence for any odd prime p〉3, S(1,1,1 ;p)=-2Bp-3 (mod p), which holds when p=3 evidently. In this paper, we consider finite triple harmonic sum S(α,β, γ,ρ) (modp) is considered for all positive integers α,β, γ. We refer to w=α+β+ γ as the weight of the sum, and show that if w is even, S(α,β, γ,ρ)=0 (mod p) for p≥w+3; if w is odd, S(α,β, γ,ρ)=-rBp-w (mod p) for p≥w, here r is an explicit rational number independent ofp. A congruence of Catalan number is obtained as a special case.展开更多
Let {(D n, FFFn),n/->1} be a sequence of martingale differences and {a ni, 1≤i≤n,n≥1} be an array of real constants. Almost sure convergence for the row sums ?i = 1n ani D1\sum\limits_{i = 1}^n {a_{ni} D_1 } are...Let {(D n, FFFn),n/->1} be a sequence of martingale differences and {a ni, 1≤i≤n,n≥1} be an array of real constants. Almost sure convergence for the row sums ?i = 1n ani D1\sum\limits_{i = 1}^n {a_{ni} D_1 } are discussed. We also discuss complete convergence for the moving average processes underB-valued martingale differences assumption.展开更多
Let {X n,n≥1} be a stationary LNQD or NA sequence satisfying EX 1=μ,EX 2 1<∞ and (Var S n)/n→σ 2 as n→∞.In this paper a class of self-normalized central limit theorems and estimators of Var S n are ...Let {X n,n≥1} be a stationary LNQD or NA sequence satisfying EX 1=μ,EX 2 1<∞ and (Var S n)/n→σ 2 as n→∞.In this paper a class of self-normalized central limit theorems and estimators of Var S n are studied.The weak and strong consistency of the estimators of Var S n are presented.展开更多
This paper studies a Sparre Andersen negative risk sums model in which the distribution of "interclaim" time is that of a sum of n independent exponential random variables. Thus, the Erlang(n) model is a special c...This paper studies a Sparre Andersen negative risk sums model in which the distribution of "interclaim" time is that of a sum of n independent exponential random variables. Thus, the Erlang(n) model is a special case. On this basis the correlated negative risk sums process with the common Erlang process is considered. Integro-differential equations with boundary conditions for ψ(u) are given. For some special cases a closed-form expression for ψ(u) is derived.展开更多
Utilizing translation operators we get the powers sums on arithmetic progressions and the Bernoulli polynomials of order munder the form of differential operators acting on monomials. It follows that (d/dn-d/dz) appli...Utilizing translation operators we get the powers sums on arithmetic progressions and the Bernoulli polynomials of order munder the form of differential operators acting on monomials. It follows that (d/dn-d/dz) applied on a power sum has a meaning and is exactly equal to the Bernoulli polynomial of the same order. From this new property we get the formula giving powers sums in term of sums of successive derivatives of Bernoulli polynomial multiplied withprimitives of the same order of n. Then by changing the two arguments z,n into Z=z(z-1), λ where λ designed the 1st order power sums and proving that Bernoulli polynomials of odd order vanish for arguments equal to 0, 1/2, 1, we obtain easily the Faulhaber formula for powers sums in term of polynomials in λ having coefficients depending on Z. These coefficients are found to be derivatives of odd powers sums on integers expressed in Z. By the way we obtain the link between Faulhaber formulae for powers sums on integers and on arithmetic progressions. To complete the work we propose tables for calculating in easiest manners possibly the Bernoulli numbers, the Bernoulli polynomials, the powers sums and the Faulhaber formula for powers sums.展开更多
A model adequacy test should be carried out on the basis of accurate aprioristic ideas about a class of adequate models, as in solving of practical problems this class is final. In article, the quadratic sums entering...A model adequacy test should be carried out on the basis of accurate aprioristic ideas about a class of adequate models, as in solving of practical problems this class is final. In article, the quadratic sums entering into the equation of the dispersive analysis are considered and their independence is proved. Necessary and sufficient conditions of existence of adequate models are resulted. It is shown that the class of adequate models is infinite.展开更多
In this paper, we obtain the moment conditions for the supermun of normed sums of ρ^--mixing random variables by using the Rosenthal-type inequality for Maximum partial sums of ρ^--mixing random variables. The resul...In this paper, we obtain the moment conditions for the supermun of normed sums of ρ^--mixing random variables by using the Rosenthal-type inequality for Maximum partial sums of ρ^--mixing random variables. The result obtained generalize the results of Chen(2008) and extend those to negatively associated sequences and ρ^--mixing random variables.展开更多
The differences between two sequences of nonnegative independent and identically distributed random variables with sub-exponential tails and the random index are studied. The random index is a strictly stationary rene...The differences between two sequences of nonnegative independent and identically distributed random variables with sub-exponential tails and the random index are studied. The random index is a strictly stationary renewal counting process generated by some negatively associated random variables. Using a revised large deviation result of partial sums, the elementary renewal theorem and the central limit theorem of negatively associated random variables, a precise large deviation result is derived for the random sums. The result is applied to the customer-arrival-based insurance risk model. Some uniform asymptotics for the ruin probabilities of an insurance company are obtained as the number of customers or the time tends to infinity.展开更多
Let Sigma (infinity)(n=1) X-n be a series of independent random variables with at least one non-degenerate X-n, and let F-n be the distribution function of its partial sums S-n = Sigma (n)(k=1) X-k. Motivated by Hilde...Let Sigma (infinity)(n=1) X-n be a series of independent random variables with at least one non-degenerate X-n, and let F-n be the distribution function of its partial sums S-n = Sigma (n)(k=1) X-k. Motivated by Hildebrand's work in [1], the authors investigate the a.s. convergence of Sigma (infinity)(n=1) X-n under a hypothesis that Sigma (infinity)(n=1) rho (X-n, c(n)) = infinity whener Sigma (infinity)(n=1) c(n) diverges, where the notation rho (X,c) denotes the Levy distance between the random variable X and the constant c. The principal result of this paper shows that the hypothesis is the condition under which the convergence of F-n(x(0)) with the limit value 0 < L-0 < 1, together with the essential convergence of Sigma (infinity)(n=1) X-n, is both sufficient and necessary in order for the series Sigma (infinity)(n=1) X-n to a.s. coverage. Moreover, if the essential convergence of Sigma (infinity)(n=1) X-n is strengthened to limsup(n=infinity) P(\S-n\ < K) = 1 for some K > 0, the hypothesis is already equivalent to the a.s. convergence of Sigma (infinity)(n=1) X-n. Here they have not only founded a very general limit theorem, but improved the related result in Hildebrand([1]) as well.展开更多
We mainly study the almost sure limiting behavior of weighted sums of the form ∑ni=1 aiXi/bn , where {Xn, n ≥ 1} is an arbitrary Banach space valued random element sequence or Banach space valued martingale differen...We mainly study the almost sure limiting behavior of weighted sums of the form ∑ni=1 aiXi/bn , where {Xn, n ≥ 1} is an arbitrary Banach space valued random element sequence or Banach space valued martingale difference sequence and {an, n ≥ 1} and {bn,n ≥ 1} are two sequences of positive constants. Some new strong laws of large numbers for such weighted sums are proved under mild conditions.展开更多
In this paper, a general algorithm for the computation of the Fourier coefficients of 2π-periodic (continuous) functions is developed based on Dirichlet characters, Gauss sums and the generalized MSbius transform. ...In this paper, a general algorithm for the computation of the Fourier coefficients of 2π-periodic (continuous) functions is developed based on Dirichlet characters, Gauss sums and the generalized MSbius transform. It permits the direct extraction of the Fourier cosine and sine coefficients. Three special cases of our algorithm are presented. A VLSI architecture is presented and the error estimates are given.展开更多
We use the sampling representations associated with Sturm-Liouville difference operators to derive generalized integral-valued trigonometric sums. This extends the known results where zeros of Chebyshev polynomials of...We use the sampling representations associated with Sturm-Liouville difference operators to derive generalized integral-valued trigonometric sums. This extends the known results where zeros of Chebyshev polynomials of the first kind are involved to the use of the eigenvalues of difference operators, which leads to new identities. In these identities Bernoulli's numbers play a role similar to that of Euler's in the old ones. Our technique differs from that of Byrne-Smith (1997) and Berndt-Yeap (2002).展开更多
It is difficult to study the mean value properties of the higher-Kloosterman sums S(m,n,q;k) for any positive integer k.In this paper,the fourth power mean of this exponential sums is studied by combining congruence...It is difficult to study the mean value properties of the higher-Kloosterman sums S(m,n,q;k) for any positive integer k.In this paper,the fourth power mean of this exponential sums is studied by combining congruence theorey with the analytic method,and an interesting asymptotic formula for it is obtained.The new result is an important generalization and improvement of the previous.展开更多
For weighted sums of asymptotically almost negatively associated (AANA) random variables sequences, we use the Rosenthal type moment inequalities and prove the Marcinkiewicz-Zygmund type complete convergence and obtai...For weighted sums of asymptotically almost negatively associated (AANA) random variables sequences, we use the Rosenthal type moment inequalities and prove the Marcinkiewicz-Zygmund type complete convergence and obtain the complete convergence rates. Our results extend some known ones.展开更多
This paper will correct some gaps existing in the proof of a theorem written in an earlier paper by the author on the lower bounds for sums of BDH type published in 1993. Some improvements upon the previous version of...This paper will correct some gaps existing in the proof of a theorem written in an earlier paper by the author on the lower bounds for sums of BDH type published in 1993. Some improvements upon the previous version of that theorem will be obtained.展开更多
文摘Sums of convergent series for any desired number of terms, which may be infinite, are estimated very accurately by establishing definite rational polynomials. For infinite number of terms the sum infinite is obtained by taking the asymptotic limit of the rational polynomial. A rational function with second-degree polynomials both in the numerator and denominator is found to produce excellent results. Sums of series with different characteristics such as alternating signs are considered for testing the performance of the proposed approach.
基金Supported by the National Natural Science Foundation of China(11061012)Project Supported by Program to Sponsor Teams for Innovation in the Construction of Talent Highlands in Guangxi Institutions of Higher Learning([2011]47)the Guangxi Natural Science Foundation of China(2012GXNSFAA053010)
文摘Consider a sequence of i.i.d.positive random variables.An universal result in almost sure limit theorem for products of sums of partial sums is established.We will show that the almost sure limit theorem holds under a fairly general condition on the weight dk= k-1 exp(lnβk),0≤β〈1.And in a sense,our results have reached the optimal form.
基金Foundation item: Supported by the National Natural Science Foundation of China(11171001, 11201001) Supported by the Natural Science Foundation of Anhui Province(t208085QA03, 1308085QA03)
文摘In this paper, strong laws of large numbers for weighted sums of ■-mixing sequence are investigated. Our results extend the corresponding results for negatively associated sequence to the case of ■-mixing sequence.
基金Foundation item: Supported by the Humanities and Social Sciences Foundation for the Youth Scholars of Ministry of Education of China(12YJCZH217) Supported by the Natural Science Foundation of Anhui Province(1308085MA03) Supported by the Key Natural Science Foundation of Educational Committe of Anhui Province(KJ2014A255)
文摘In this article, the author establishes the strong laws for linear statistics that are weighted sums of a m-negatively associated(m-NA) random sample. The obtained results extend and improve the result of Qiu and Yang in [1] to m-NA random variables.
基金Project (No. 10371107) supported by the National Natural Science Foundation of China
文摘Zhao (2003a) first established a congruence for any odd prime p〉3, S(1,1,1 ;p)=-2Bp-3 (mod p), which holds when p=3 evidently. In this paper, we consider finite triple harmonic sum S(α,β, γ,ρ) (modp) is considered for all positive integers α,β, γ. We refer to w=α+β+ γ as the weight of the sum, and show that if w is even, S(α,β, γ,ρ)=0 (mod p) for p≥w+3; if w is odd, S(α,β, γ,ρ)=-rBp-w (mod p) for p≥w, here r is an explicit rational number independent ofp. A congruence of Catalan number is obtained as a special case.
文摘Let {(D n, FFFn),n/->1} be a sequence of martingale differences and {a ni, 1≤i≤n,n≥1} be an array of real constants. Almost sure convergence for the row sums ?i = 1n ani D1\sum\limits_{i = 1}^n {a_{ni} D_1 } are discussed. We also discuss complete convergence for the moving average processes underB-valued martingale differences assumption.
基金the National Natural Science Foundation of China(1 0 0 71 0 72 )
文摘Let {X n,n≥1} be a stationary LNQD or NA sequence satisfying EX 1=μ,EX 2 1<∞ and (Var S n)/n→σ 2 as n→∞.In this paper a class of self-normalized central limit theorems and estimators of Var S n are studied.The weak and strong consistency of the estimators of Var S n are presented.
基金Supported by the Foundation of Suzhou Science and Technology University
文摘This paper studies a Sparre Andersen negative risk sums model in which the distribution of "interclaim" time is that of a sum of n independent exponential random variables. Thus, the Erlang(n) model is a special case. On this basis the correlated negative risk sums process with the common Erlang process is considered. Integro-differential equations with boundary conditions for ψ(u) are given. For some special cases a closed-form expression for ψ(u) is derived.
文摘Utilizing translation operators we get the powers sums on arithmetic progressions and the Bernoulli polynomials of order munder the form of differential operators acting on monomials. It follows that (d/dn-d/dz) applied on a power sum has a meaning and is exactly equal to the Bernoulli polynomial of the same order. From this new property we get the formula giving powers sums in term of sums of successive derivatives of Bernoulli polynomial multiplied withprimitives of the same order of n. Then by changing the two arguments z,n into Z=z(z-1), λ where λ designed the 1st order power sums and proving that Bernoulli polynomials of odd order vanish for arguments equal to 0, 1/2, 1, we obtain easily the Faulhaber formula for powers sums in term of polynomials in λ having coefficients depending on Z. These coefficients are found to be derivatives of odd powers sums on integers expressed in Z. By the way we obtain the link between Faulhaber formulae for powers sums on integers and on arithmetic progressions. To complete the work we propose tables for calculating in easiest manners possibly the Bernoulli numbers, the Bernoulli polynomials, the powers sums and the Faulhaber formula for powers sums.
文摘A model adequacy test should be carried out on the basis of accurate aprioristic ideas about a class of adequate models, as in solving of practical problems this class is final. In article, the quadratic sums entering into the equation of the dispersive analysis are considered and their independence is proved. Necessary and sufficient conditions of existence of adequate models are resulted. It is shown that the class of adequate models is infinite.
基金Supported by the National Science Foundation of China(10661006)Supported by Innovation Project of Guangxi Graduate Education(2007105960812M18)
文摘In this paper, we obtain the moment conditions for the supermun of normed sums of ρ^--mixing random variables by using the Rosenthal-type inequality for Maximum partial sums of ρ^--mixing random variables. The result obtained generalize the results of Chen(2008) and extend those to negatively associated sequences and ρ^--mixing random variables.
基金The National Natural Science Foundation of China (No.10671139,11001052)the Natural Science Foundation of Jiangsu Province(No. BK2008284 )+2 种基金China Postdoctoral Science Foundation ( No.20100471365)the Natural Science Foundation of Higher Education Institutions of Jiangsu Province (No. 09KJD110003)Postdoctoral Research Program of Jiangsu Province (No.0901029C)
文摘The differences between two sequences of nonnegative independent and identically distributed random variables with sub-exponential tails and the random index are studied. The random index is a strictly stationary renewal counting process generated by some negatively associated random variables. Using a revised large deviation result of partial sums, the elementary renewal theorem and the central limit theorem of negatively associated random variables, a precise large deviation result is derived for the random sums. The result is applied to the customer-arrival-based insurance risk model. Some uniform asymptotics for the ruin probabilities of an insurance company are obtained as the number of customers or the time tends to infinity.
文摘Let Sigma (infinity)(n=1) X-n be a series of independent random variables with at least one non-degenerate X-n, and let F-n be the distribution function of its partial sums S-n = Sigma (n)(k=1) X-k. Motivated by Hildebrand's work in [1], the authors investigate the a.s. convergence of Sigma (infinity)(n=1) X-n under a hypothesis that Sigma (infinity)(n=1) rho (X-n, c(n)) = infinity whener Sigma (infinity)(n=1) c(n) diverges, where the notation rho (X,c) denotes the Levy distance between the random variable X and the constant c. The principal result of this paper shows that the hypothesis is the condition under which the convergence of F-n(x(0)) with the limit value 0 < L-0 < 1, together with the essential convergence of Sigma (infinity)(n=1) X-n, is both sufficient and necessary in order for the series Sigma (infinity)(n=1) X-n to a.s. coverage. Moreover, if the essential convergence of Sigma (infinity)(n=1) X-n is strengthened to limsup(n=infinity) P(\S-n\ < K) = 1 for some K > 0, the hypothesis is already equivalent to the a.s. convergence of Sigma (infinity)(n=1) X-n. Here they have not only founded a very general limit theorem, but improved the related result in Hildebrand([1]) as well.
基金Supported by the National Natural Science Foundationof China (10671149)
文摘We mainly study the almost sure limiting behavior of weighted sums of the form ∑ni=1 aiXi/bn , where {Xn, n ≥ 1} is an arbitrary Banach space valued random element sequence or Banach space valued martingale difference sequence and {an, n ≥ 1} and {bn,n ≥ 1} are two sequences of positive constants. Some new strong laws of large numbers for such weighted sums are proved under mild conditions.
基金Supported by National Natural Science Foundation of China(11201370)the Science and Technology Program of Shaanxi Province of China(2013JM1017,2014JM1007,2014KJXX-61)the Natural Science Foundation of the Education Department of Shaanxi Province of China(2013JK0558)
文摘In this paper, a general algorithm for the computation of the Fourier coefficients of 2π-periodic (continuous) functions is developed based on Dirichlet characters, Gauss sums and the generalized MSbius transform. It permits the direct extraction of the Fourier cosine and sine coefficients. Three special cases of our algorithm are presented. A VLSI architecture is presented and the error estimates are given.
文摘We use the sampling representations associated with Sturm-Liouville difference operators to derive generalized integral-valued trigonometric sums. This extends the known results where zeros of Chebyshev polynomials of the first kind are involved to the use of the eigenvalues of difference operators, which leads to new identities. In these identities Bernoulli's numbers play a role similar to that of Euler's in the old ones. Our technique differs from that of Byrne-Smith (1997) and Berndt-Yeap (2002).
基金Project supported by the Special Foundation for Excellent Young Teacher to Scientific Research (Grant No.2007GQS0142)the Innovation Foundation of Shanghai University
文摘It is difficult to study the mean value properties of the higher-Kloosterman sums S(m,n,q;k) for any positive integer k.In this paper,the fourth power mean of this exponential sums is studied by combining congruence theorey with the analytic method,and an interesting asymptotic formula for it is obtained.The new result is an important generalization and improvement of the previous.
文摘For weighted sums of asymptotically almost negatively associated (AANA) random variables sequences, we use the Rosenthal type moment inequalities and prove the Marcinkiewicz-Zygmund type complete convergence and obtain the complete convergence rates. Our results extend some known ones.
文摘This paper will correct some gaps existing in the proof of a theorem written in an earlier paper by the author on the lower bounds for sums of BDH type published in 1993. Some improvements upon the previous version of that theorem will be obtained.