The line formation process in stellar magnetized atmospheres is studied by observing the wavelength- dependence of Stokes contribution functions. The influence of magnetic field on the escape line photon distribution...The line formation process in stellar magnetized atmospheres is studied by observing the wavelength- dependence of Stokes contribution functions. The influence of magnetic field on the escape line photon distribution and line absorption is obtained by comparing with the null magnetic field case. Two models airs adopted. One assumes limited distributions of both the line absorption and magnetic field where a hypothetical magneto-sensitive line is formed. The other is a model atmosphere of sunspot umbra in which MgI 5172.7 forms. It is found that the magnetic field influences the formation region of Stokes I at wavelengths sufficient close to the Zeeman splitting points ±△ H. The formation regions at wavelengths far away from the Zeeman splitting points generally show a non-magnetic behaviour. Further, if the line core is split by the Zeeman effect, the line formation core introduced in the previous paper disappears. On the other hand, Stokes Q, U, V at each wavelength within the line form in the same layers where both the line absorption and magnetic field are present in the models accepted for the lines used. When the line absorption and magnetic field ubiquitously exist, the formation regions of the T peaks or valleys of Stokes Q, U and those of σ of Stokes V generally cover the widest depth range. It is pointed out that such a study is instructive in the explanation of solar polarized filtergrams. It can tell us at each observation point where the received line photons of wavelengths within the bandpass come from and where their polarization states are formed or give us the distributions of these photons as well as their polarization intensities. Thus a three-dimensional image can be constructed for a morphologic study of the observed area from serial filtergrams.展开更多
A set of two-dimensional Stokes spectral data of NOAA AR 10197 obtained by the Solar Stokes Spectral Telescope (S^3T) at the Yunnan Observatory are quafitatively analyzed. The three components of the vector magnetic...A set of two-dimensional Stokes spectral data of NOAA AR 10197 obtained by the Solar Stokes Spectral Telescope (S^3T) at the Yunnan Observatory are quafitatively analyzed. The three components of the vector magnetic field, the strength H, inclination 7 and azimuth X, are derived. Based on the three components, we contour the distributions of the longitudinal magnetic field and transverse magnetic field. The active region (AR) has two different magnetic polarities apparent in the longitudinal magnetic map due to projection effect. There is a basic agreement on the longitudinal magnetic fields between the S^3T and SOHO/MDI magnetograms, with a correlation coefficient PBl = 0.911. The transverse magnetic field of the AR has a radial distribution from a center located in the southwest of the AR. It is also found that the transverse magnetic fields obtained by Huairou Solar Observing Station (HRSOS) have a similar radial distribution. The distributions of transverse magnetic field obtained by S^3T and HRSOS have correlation coefficients, PAzimu = 0.86 and PBt =0.883, in regard to the azimuthal angle and intensity.展开更多
Ellerman bombs (EBs) are tiny brightenings often observed near sunspots. The most impressive characteristic of EB spectra is the two emission bumps in both wings of the Hα and Ca II 8542 A lines. High-resolution sp...Ellerman bombs (EBs) are tiny brightenings often observed near sunspots. The most impressive characteristic of EB spectra is the two emission bumps in both wings of the Hα and Ca II 8542 A lines. High-resolution spectral data of three small EBs were obtained on 2013 June 6 with the largest solar telescope, the 1.6 m New Solar Telescope at the Big Bear Solar Observatory. The characteristics of these EBs are analyzed. The sizes of the EBs are in the range of 0.3" - 0.8" and their durations are only 3-5 min. Our semi-empirical atmospheric models indicate that the heating occurs around the temperature minimum region with a temperature increase of 2700- 3000 K, which is surprisingly higher than previously thought. The radiative and kinetic energies are estimated to be as high as 5 × 1025 - 3.0 × 10^26 erg despite the small size of these EBs. Observations of the magnetic field show that the EBs just appeared in a parasitic region with mixed polarities and were accompanied by mass motions. Nonlinear force-free field extrapolation reveals that the three EBs are connected with a series of magnetic field lines associated with bald patches, which strongly implies that these EBs should be produced by magnetic reconnection in the solar lower atmosphere. According to the lightcurves and the estimated magnetic reconnection rate, we propose that there is a three phase process in EBs: pre-heating, flaring and cooling phases.展开更多
Scattering of anisotropic radiation by atoms,ions or molecules is sufficient to generate linear polarization observable in stars and planets’atmospheres,circumstellar environments,and in particular in the Sun’s atmo...Scattering of anisotropic radiation by atoms,ions or molecules is sufficient to generate linear polarization observable in stars and planets’atmospheres,circumstellar environments,and in particular in the Sun’s atmosphere.This kind of polarization is called scattering polarization(SP)or second solar spectrum(SSS)if it is formed near the limb of the solar photosphere.Generation of linear SP can typically be reached more easily than circular SP.Interestingly,the latter is often absent in observations and theories.Intrigued by this,we propose to demonstrate how circular SP can be created by anisotropic collisions if a magnetic field is present.We also demonstrate how anisotropic collisions can result in the creation of circular SP if the radiation field is anisotropic.We show that under certain conditions,linear SP creation is accompanied by the emergence of circular SP which can be useful for diagnostics of solar and astrophysical plasmas.We treat an example and calculate the density matrix elements of tensorial order k=1 which are directly associated with the presence of circular SP.This work should encourage theoretical and observational research to be increasingly oriented towards circular SP profiles in addition to linear SP in order to improve our analysis tools of astrophysical and solar observations.展开更多
文摘The line formation process in stellar magnetized atmospheres is studied by observing the wavelength- dependence of Stokes contribution functions. The influence of magnetic field on the escape line photon distribution and line absorption is obtained by comparing with the null magnetic field case. Two models airs adopted. One assumes limited distributions of both the line absorption and magnetic field where a hypothetical magneto-sensitive line is formed. The other is a model atmosphere of sunspot umbra in which MgI 5172.7 forms. It is found that the magnetic field influences the formation region of Stokes I at wavelengths sufficient close to the Zeeman splitting points ±△ H. The formation regions at wavelengths far away from the Zeeman splitting points generally show a non-magnetic behaviour. Further, if the line core is split by the Zeeman effect, the line formation core introduced in the previous paper disappears. On the other hand, Stokes Q, U, V at each wavelength within the line form in the same layers where both the line absorption and magnetic field are present in the models accepted for the lines used. When the line absorption and magnetic field ubiquitously exist, the formation regions of the T peaks or valleys of Stokes Q, U and those of σ of Stokes V generally cover the widest depth range. It is pointed out that such a study is instructive in the explanation of solar polarized filtergrams. It can tell us at each observation point where the received line photons of wavelengths within the bandpass come from and where their polarization states are formed or give us the distributions of these photons as well as their polarization intensities. Thus a three-dimensional image can be constructed for a morphologic study of the observed area from serial filtergrams.
基金Supported by the National Natural Science Foundation of China.
文摘A set of two-dimensional Stokes spectral data of NOAA AR 10197 obtained by the Solar Stokes Spectral Telescope (S^3T) at the Yunnan Observatory are quafitatively analyzed. The three components of the vector magnetic field, the strength H, inclination 7 and azimuth X, are derived. Based on the three components, we contour the distributions of the longitudinal magnetic field and transverse magnetic field. The active region (AR) has two different magnetic polarities apparent in the longitudinal magnetic map due to projection effect. There is a basic agreement on the longitudinal magnetic fields between the S^3T and SOHO/MDI magnetograms, with a correlation coefficient PBl = 0.911. The transverse magnetic field of the AR has a radial distribution from a center located in the southwest of the AR. It is also found that the transverse magnetic fields obtained by Huairou Solar Observing Station (HRSOS) have a similar radial distribution. The distributions of transverse magnetic field obtained by S^3T and HRSOS have correlation coefficients, PAzimu = 0.86 and PBt =0.883, in regard to the azimuthal angle and intensity.
基金supported by the National Natural Science Foundation of China (NSFC, Grants 10878002, 10933003, 11025314, 10673004, 11203014 and 11103075)NKBRSF (Grant Nos. 2011CB811402 and 2014CB744203)+1 种基金the support of the US NSF (AGS0847126 and AGS-1250818)NASA (NNX13AG14G)
文摘Ellerman bombs (EBs) are tiny brightenings often observed near sunspots. The most impressive characteristic of EB spectra is the two emission bumps in both wings of the Hα and Ca II 8542 A lines. High-resolution spectral data of three small EBs were obtained on 2013 June 6 with the largest solar telescope, the 1.6 m New Solar Telescope at the Big Bear Solar Observatory. The characteristics of these EBs are analyzed. The sizes of the EBs are in the range of 0.3" - 0.8" and their durations are only 3-5 min. Our semi-empirical atmospheric models indicate that the heating occurs around the temperature minimum region with a temperature increase of 2700- 3000 K, which is surprisingly higher than previously thought. The radiative and kinetic energies are estimated to be as high as 5 × 1025 - 3.0 × 10^26 erg despite the small size of these EBs. Observations of the magnetic field show that the EBs just appeared in a parasitic region with mixed polarities and were accompanied by mass motions. Nonlinear force-free field extrapolation reveals that the three EBs are connected with a series of magnetic field lines associated with bald patches, which strongly implies that these EBs should be produced by magnetic reconnection in the solar lower atmosphere. According to the lightcurves and the estimated magnetic reconnection rate, we propose that there is a three phase process in EBs: pre-heating, flaring and cooling phases.
基金funded by the Deanship of Scientific Research(DSR)at King Abdulaziz University,Jeddah,under grant no.(G:348-1301440)DSR for technical and financial support。
文摘Scattering of anisotropic radiation by atoms,ions or molecules is sufficient to generate linear polarization observable in stars and planets’atmospheres,circumstellar environments,and in particular in the Sun’s atmosphere.This kind of polarization is called scattering polarization(SP)or second solar spectrum(SSS)if it is formed near the limb of the solar photosphere.Generation of linear SP can typically be reached more easily than circular SP.Interestingly,the latter is often absent in observations and theories.Intrigued by this,we propose to demonstrate how circular SP can be created by anisotropic collisions if a magnetic field is present.We also demonstrate how anisotropic collisions can result in the creation of circular SP if the radiation field is anisotropic.We show that under certain conditions,linear SP creation is accompanied by the emergence of circular SP which can be useful for diagnostics of solar and astrophysical plasmas.We treat an example and calculate the density matrix elements of tensorial order k=1 which are directly associated with the presence of circular SP.This work should encourage theoretical and observational research to be increasingly oriented towards circular SP profiles in addition to linear SP in order to improve our analysis tools of astrophysical and solar observations.