Time-periodic driving has been an effective tool in the field of nonequilibrium quantum dynamics,which enables precise control of the particle interactions.We investigate the collective emission of particles from a Bo...Time-periodic driving has been an effective tool in the field of nonequilibrium quantum dynamics,which enables precise control of the particle interactions.We investigate the collective emission of particles from a Bose-Einstein condensate in a one-dimensional lattice with periodic drives that are separate in modulation amplitudes and relative phases.In addition to the enhancement of particle emission,we find that amplitude imbalances lead to energy shift and band broadening,while typical relative phases may give rise to similar gaps.These results offer insights into the specific manipulations of nonequilibrium quantum systems with tone-varying drives.展开更多
The stability of coal walls(pillars)can be seriously undermined by diverse in-situ dynamic disturbances.Based on a 3D par-ticle model,this work strives to numerically replicate the major mechanical responses and acous...The stability of coal walls(pillars)can be seriously undermined by diverse in-situ dynamic disturbances.Based on a 3D par-ticle model,this work strives to numerically replicate the major mechanical responses and acoustic emission(AE)behaviors of coal samples under multi-stage compressive cyclic loading with different loading and unloading rates,which is termed differential cyclic loading(DCL).A Weibull-distribution-based model with heterogeneous bond strengths is constructed by both considering the stress-strain relations and AE parameters.Six previously loaded samples were respectively grouped to indicate two DCL regimes,the damage mechanisms for the two groups are explicitly characterized via the time-stress-dependent variation of bond size multiplier,and it is found the two regimes correlate with distinct damage patterns,which involves the competition between stiffness hardening and softening.The numerical b-value is calculated based on the mag-nitudes of AE energy,the results show that both stress level and bond radius multiplier can impact the numerical b-value.The proposed numerical model succeeds in replicating the stress-strain relations of lab data as well as the elastic-after effect in DCL tests.The effect of damping on energy dissipation and phase shift in numerical model is summarized.展开更多
Information is given on thermal radiation from the Sun, considered in practical engineering calculations of heat exchange. It was found that although the surface temperature of the Sun is assumed to be about 5800 K, t...Information is given on thermal radiation from the Sun, considered in practical engineering calculations of heat exchange. It was found that although the surface temperature of the Sun is assumed to be about 5800 K, the solar spectrum data measured by Kondratyev lead to a value of at least 7134 K. Such a higher value can be obtained by interpreting the Planck formula for the black radiation spectrum for the Kondratyev data. In addition, using the Stefan-Boltzmann law, the energetic emissivity of the Sun’s surface was determined to be 0.431. Furthermore, based on Petela’s formulae for exergy of thermal radiation, the exergetic emissivity of the Sun’s surface was also calculated at the level of 0.426.展开更多
Great experimental results and observations achieved by Astronomy in the last decades revealed new unexplainable phenomena. Astronomers have conclusive new evidence that a recently discovered “dark galaxy” is, in fa...Great experimental results and observations achieved by Astronomy in the last decades revealed new unexplainable phenomena. Astronomers have conclusive new evidence that a recently discovered “dark galaxy” is, in fact, an object the size of a galaxy, made entirely of dark matter. They found that the speed of the Earth’s rotation varies randomly each day. 115 years ago, the Tunguska Event was observed, and astronomers still do not have an explanation of It. Main results of the present article are: 1) Dark galaxies explained by the spinning of their Dark Matter Cores with the surface speed at equator less than the escape velocity. Their Rotational Fission is not happening. Extrasolar systems do not emerge;2) 21-cm Emission explained by the self-annihilation of Dark Matter particles XIONs (5.3 μeV);3) Sun-Earth-Moon Interaction explained by the influence of the Sun’s and the Moon’s magnetic field on the electrical currents of the charged Geomagma (the 660-km layer), and, as a result, the Earth’s daylength varies;4) Tunguska Event explained by a huge atmospheric explosion of the Superbolide, which was a stable Dark Matter Bubble before entering the Earth’s atmosphere.展开更多
Particle breakage is a common occurrence in granular systems when the external stress exceeds the individual particle strength.A large number of experimental evidences suggested that particle breakage may significantl...Particle breakage is a common occurrence in granular systems when the external stress exceeds the individual particle strength.A large number of experimental evidences suggested that particle breakage may significantly influence the soil behavior.In the case of pile foundations,the subsoil below the pile tip experiences considerable high stress and consequently prone to break.Due to the lack of sufficient understanding on particle breakage mechanism,there is currently no consentaneous theoretical background for particle breakage analysis during the pile penetration process.This study aims to clarify the location of particle breakage and its evolving characteristics with the aid of acoustic emission(AE)source location method.The spatial distribution of AE hypocenters is interpreted to be associated with the mechanism of particle breakage.Results showed that the AE sources were not uniformly distributed,but concentrated within certain zones below the pile tip.This AE concentration zone was pushed downward with the advancing pile tip,and its distance from the real time pile tip position decreased after certain depth of pile penetration.The location of particle breakage interpreted from AE source location was verified with posttest excavations and the insights on the particle breakage evolution zone were further discussed.展开更多
The fuel sulfur content in marine fuels has been regulated in Sulfur Emission Control Areas(SECAs) since January 2015. However, other fuel characteristics are also believed to have an impact on particle emissions, par...The fuel sulfur content in marine fuels has been regulated in Sulfur Emission Control Areas(SECAs) since January 2015. However, other fuel characteristics are also believed to have an impact on particle emissions, particularly on the number of particles emitted. This study investigates the impact of the content of aromatics in fuel. To achieve fuel blends with concentrations of aromatics similar to those found in marine fuel oils, i.e. 20%–30% by volume(%vol.), normal diesel oil(4%–5% vol. aromatics) is doped with a mixture of aromatics. Emission measurements are conducted in test-bed engine facilities and particle emissions over a wide size range are analyzed. Results show a decreased number of particles emitted(or not change) with an increase in the aromatic concentration in fuel. This is because there is a reduction in the cetane number of the fuel with an increased aromatic content, which effects the combustion process and results in decreased particle formation. However, when ignition improver is used to increase the cetane number, particle emissions remain at a lower level than for normal diesel oil; thereby emphasizing the presence of other factors in the formation of particles.展开更多
The azimuthal distributions of final-state particles and fragments produced in high-energy nucleus-nucleus collisions are described by a modified multisource ideal gas model which contains the expansions and movements...The azimuthal distributions of final-state particles and fragments produced in high-energy nucleus-nucleus collisions are described by a modified multisource ideal gas model which contains the expansions and movements of the emission sources. The transverse structures of the sources are given in the transverse plane by momentum components Px and Py, and described by parameters in the model. The results of the azimuthal distributions, calculated by the Monte Carlo method, are in good agreement with the experimental data in nucleus-nucleus collisions at high energies.展开更多
Number concentration and size distribution from gasoline ears are investigated at transient modes on the chassis dynamometers, which are measured using electrical low pressure impactor (ELPI) for the ECE15 and EUDC ...Number concentration and size distribution from gasoline ears are investigated at transient modes on the chassis dynamometers, which are measured using electrical low pressure impactor (ELPI) for the ECE15 and EUDC cycles. Results indicate that, during cold start, particle number emission is higher than that under hot start. It is found that the number of particles increases with the vehicle speeds. Furthermore, particles with diameter smaller than 200 nm constitute the predominant part of total emission in the entire cycle. In addition, the tentative information about composition of emitted particles is also discussed.展开更多
Biochar amendment is generally recognized as an effective mitigation option of methane(CH_(4))emissions from rice cultivation.Although its mitigation mechanisms are not well understood,the potential relevance of surfa...Biochar amendment is generally recognized as an effective mitigation option of methane(CH_(4))emissions from rice cultivation.Although its mitigation mechanisms are not well understood,the potential relevance of surface area and porosity of biochar has been discussed.This study aimed to evaluate the application of different biochar particle sizes on CH_(4) production,oxidation,and emissions from rice cultivation in a clay loam soil,based on the assumption that porosity and surface area of biochar are directly related to its mitigation effects.Rice was grown under greenhouse conditions for two growing seasons,either with 0.5–2 mm(small,SB)or with 2–4 mm(large,LB)biochar.The results show that both sizes of biochar increased soil pH and redox potential(Eh)during rice growth.Soil dissolved organic carbon(DOC),nitrate(NO^(−)_(3)),and sulfate(SO^(2−)_(4))also increased under both biochar amendments,but size effects were not observed.SB and LB suppressed the abundance of CH_(4) producers(methanogens)but stimulated the abundance of CH_(4) consumers(methanotrophs).The increase of soil Eh and electron acceptors(NO^(−)_(3)and SO^(2−)_(4))indicated the increase in soil oxidation capacity is a barrier to CH_(4) production by methanogens in both biochar treatments.Laboratory incubation experiments showed that CH_(4) production activity was significantly(p≤0.05)reduced by 18.5%using SB and by 11.3%using LB compared to the control.In contrast,the stimulation of methanotrophs promoted greater CH_(4) oxidation activity by 15.0%in SB and 18.7%in LB compared to the control.It shows that CH_(4) production was reduced more by larger surface area biochar(SB),while a greater increase in CH_(4) oxidation was found using larger pore volume biochar(LB).The effects on CH_(4) production were more pronounced than those on CH_(4) oxidation,resulting in a greater reduction of cumulative CH_(4) emissions by SB than LB(by 26.6%and 19.9%compared to control,respectively).展开更多
In the present study nano-tungsten carbide particles were generated in a wire explosion process.The plasma generated during the wire explosion process was analyzed using optical emission spectroscopy(OES).The impact...In the present study nano-tungsten carbide particles were generated in a wire explosion process.The plasma generated during the wire explosion process was analyzed using optical emission spectroscopy(OES).The impact of ambient pressure on the plasma temperature,electron density and plasma lifetime was studied.Lifetime variations of the plasma produced under different experimental conditions were analyzed.The produced nanoparticles were characterized through wide angle X-ray diffraction(WAXD) and transmission electron microscopy(TEM) studies. Particles produced with a negative DC charging voltage had a larger mean size when compared to a positive charging voltage.Polarity dependence on the plasma duration was observed where plasma was sustained for a longer duration with a negative DC charging voltage.展开更多
Particle emission during manufacturing processes, whether chemical, physical or mechanical can represent a serious danger for environment and for occupational safety. Especially machining processes, particle emission ...Particle emission during manufacturing processes, whether chemical, physical or mechanical can represent a serious danger for environment and for occupational safety. Especially machining processes, particle emission could have an important impact on shop floor air quality and might jeopardise workers’ health. It is therefore important to find ways of reducing the particle emission at the source of manufacturing processes. To do so, there is a need to know the size, the quantity and the distribution of particles produced by processes currently used in industry. In this study, investigations are done to compare the particle emission (PM2.5) when polishing two granites (black and white). The black granite contained low Si concentration (about 10% Si) and the white granite contained high Si concentration (about 50% Si). Particle emission was monitored using the DustTrak II equipment with 2.5 μm impactor. The particle grain size was evaluated using X-ray diffraction techniques. Machining conditions leading to the generation of finer particles were identified.展开更多
Titanium metal matrix composite(Ti-MMC)has excellent features and capabilities which can be considered a potential candidate to replace commercial titanium and superalloys within an extensive range of products and ind...Titanium metal matrix composite(Ti-MMC)has excellent features and capabilities which can be considered a potential candidate to replace commercial titanium and superalloys within an extensive range of products and industrial sectors.Regardless of the superior features in Ti-MMC,however,referring to several factors including high unit cost and existence of rigid and abrasive ceramic particles in the generated matrices of the work part,the Ti-MMC is grouped as extremely difficult to cut with a poor level of machinability.Furthermore,adequate process parameters for machining Ti-MMCs under several lubrication methods are rarely studied.Therefore,adequate knowledge of this regard is strongly demanded.Among machinability attributes,ultrafine particles(UFPs)and fine particles(FPs)have been selected as the main machinability attributes and the factors leading to minimized emission have been studied.According to experimental observations,despite the type of coating used,the use of higher levels of flow rate led to less UFPs,while no significant effects were observed on UFPs.Under similar cutting conditions,higher levels of FPs were recorded under the use of uncoated inserts.Moreover,cutting speed had no significant influence on UFPs;nevertheless,it significantly affects the FPs despite the type of insert used.展开更多
基金Project supported by the China Scholarship Council(Grant No.201906130092)the Natural Science Research Start-up Foundation of Recruiting Talents of Nanjing University of Posts and Telecommunications(Grant No.NY223065)the Natural Science Foundation of Sichuan Province(Grant No.2023NSFSC1330).
文摘Time-periodic driving has been an effective tool in the field of nonequilibrium quantum dynamics,which enables precise control of the particle interactions.We investigate the collective emission of particles from a Bose-Einstein condensate in a one-dimensional lattice with periodic drives that are separate in modulation amplitudes and relative phases.In addition to the enhancement of particle emission,we find that amplitude imbalances lead to energy shift and band broadening,while typical relative phases may give rise to similar gaps.These results offer insights into the specific manipulations of nonequilibrium quantum systems with tone-varying drives.
基金funded by Open Fund of State Key Laboratory of Water Resource Protection and Utilization in Coal Mining (GJNY-20-113-03),SHGF-16-19the Fundamental Research Funds for the Central Universities (06500182)+2 种基金Funds from Joint National-Local Engineering Research Center for Safe and Precise Coal Mining (EC2021004)Funds from State Key Laboratory of Coal Resources in Western China (SKLCRKF20-07)Funds from Humboldt Research Fellowship,Funds from NSFC (52204086).
文摘The stability of coal walls(pillars)can be seriously undermined by diverse in-situ dynamic disturbances.Based on a 3D par-ticle model,this work strives to numerically replicate the major mechanical responses and acoustic emission(AE)behaviors of coal samples under multi-stage compressive cyclic loading with different loading and unloading rates,which is termed differential cyclic loading(DCL).A Weibull-distribution-based model with heterogeneous bond strengths is constructed by both considering the stress-strain relations and AE parameters.Six previously loaded samples were respectively grouped to indicate two DCL regimes,the damage mechanisms for the two groups are explicitly characterized via the time-stress-dependent variation of bond size multiplier,and it is found the two regimes correlate with distinct damage patterns,which involves the competition between stiffness hardening and softening.The numerical b-value is calculated based on the mag-nitudes of AE energy,the results show that both stress level and bond radius multiplier can impact the numerical b-value.The proposed numerical model succeeds in replicating the stress-strain relations of lab data as well as the elastic-after effect in DCL tests.The effect of damping on energy dissipation and phase shift in numerical model is summarized.
文摘Information is given on thermal radiation from the Sun, considered in practical engineering calculations of heat exchange. It was found that although the surface temperature of the Sun is assumed to be about 5800 K, the solar spectrum data measured by Kondratyev lead to a value of at least 7134 K. Such a higher value can be obtained by interpreting the Planck formula for the black radiation spectrum for the Kondratyev data. In addition, using the Stefan-Boltzmann law, the energetic emissivity of the Sun’s surface was determined to be 0.431. Furthermore, based on Petela’s formulae for exergy of thermal radiation, the exergetic emissivity of the Sun’s surface was also calculated at the level of 0.426.
文摘Great experimental results and observations achieved by Astronomy in the last decades revealed new unexplainable phenomena. Astronomers have conclusive new evidence that a recently discovered “dark galaxy” is, in fact, an object the size of a galaxy, made entirely of dark matter. They found that the speed of the Earth’s rotation varies randomly each day. 115 years ago, the Tunguska Event was observed, and astronomers still do not have an explanation of It. Main results of the present article are: 1) Dark galaxies explained by the spinning of their Dark Matter Cores with the surface speed at equator less than the escape velocity. Their Rotational Fission is not happening. Extrasolar systems do not emerge;2) 21-cm Emission explained by the self-annihilation of Dark Matter particles XIONs (5.3 μeV);3) Sun-Earth-Moon Interaction explained by the influence of the Sun’s and the Moon’s magnetic field on the electrical currents of the charged Geomagma (the 660-km layer), and, as a result, the Earth’s daylength varies;4) Tunguska Event explained by a huge atmospheric explosion of the Superbolide, which was a stable Dark Matter Bubble before entering the Earth’s atmosphere.
基金sponsored by the Shanghai Sailing Program (Grant No. 18YF1424000)Shanghai Education Commission (Peak Discipline Construction Program, Grant Nos. 0200121005/052 & 2019010206)
文摘Particle breakage is a common occurrence in granular systems when the external stress exceeds the individual particle strength.A large number of experimental evidences suggested that particle breakage may significantly influence the soil behavior.In the case of pile foundations,the subsoil below the pile tip experiences considerable high stress and consequently prone to break.Due to the lack of sufficient understanding on particle breakage mechanism,there is currently no consentaneous theoretical background for particle breakage analysis during the pile penetration process.This study aims to clarify the location of particle breakage and its evolving characteristics with the aid of acoustic emission(AE)source location method.The spatial distribution of AE hypocenters is interpreted to be associated with the mechanism of particle breakage.Results showed that the AE sources were not uniformly distributed,but concentrated within certain zones below the pile tip.This AE concentration zone was pushed downward with the advancing pile tip,and its distance from the real time pile tip position decreased after certain depth of pile penetration.The location of particle breakage interpreted from AE source location was verified with posttest excavations and the insights on the particle breakage evolution zone were further discussed.
基金Angpanneföreningen’s Foundation for Research and Development(11-164)the Foundation for Swedish Environmental Research Institute(SIVL)Swedish Maritime Organization and Lighthouse for their financial support
文摘The fuel sulfur content in marine fuels has been regulated in Sulfur Emission Control Areas(SECAs) since January 2015. However, other fuel characteristics are also believed to have an impact on particle emissions, particularly on the number of particles emitted. This study investigates the impact of the content of aromatics in fuel. To achieve fuel blends with concentrations of aromatics similar to those found in marine fuel oils, i.e. 20%–30% by volume(%vol.), normal diesel oil(4%–5% vol. aromatics) is doped with a mixture of aromatics. Emission measurements are conducted in test-bed engine facilities and particle emissions over a wide size range are analyzed. Results show a decreased number of particles emitted(or not change) with an increase in the aromatic concentration in fuel. This is because there is a reduction in the cetane number of the fuel with an increased aromatic content, which effects the combustion process and results in decreased particle formation. However, when ignition improver is used to increase the cetane number, particle emissions remain at a lower level than for normal diesel oil; thereby emphasizing the presence of other factors in the formation of particles.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 10275042 and 10475054), the Shanxi Provincial Natural Science Foundation (Grant No 20021006), and the Shanxi Provincial 1Foundation for Returned 0verseas Scholars.
文摘The azimuthal distributions of final-state particles and fragments produced in high-energy nucleus-nucleus collisions are described by a modified multisource ideal gas model which contains the expansions and movements of the emission sources. The transverse structures of the sources are given in the transverse plane by momentum components Px and Py, and described by parameters in the model. The results of the azimuthal distributions, calculated by the Monte Carlo method, are in good agreement with the experimental data in nucleus-nucleus collisions at high energies.
文摘Number concentration and size distribution from gasoline ears are investigated at transient modes on the chassis dynamometers, which are measured using electrical low pressure impactor (ELPI) for the ECE15 and EUDC cycles. Results indicate that, during cold start, particle number emission is higher than that under hot start. It is found that the number of particles increases with the vehicle speeds. Furthermore, particles with diameter smaller than 200 nm constitute the predominant part of total emission in the entire cycle. In addition, the tentative information about composition of emitted particles is also discussed.
基金This study was funded by the Thailand Research Fund(TRF)through the International Research Network Program(IRN)(IRN57W0001,IRN5701PHDW06)the Joint Graduate School of Energy and Environment(JGSEE)at King Mongkut’s University of Technology Thonburi,and the Center of Excellence on Energy Technology and Environment(CEE),PERDO,Ministry of Higher Education,Science,Research and Innovation.
文摘Biochar amendment is generally recognized as an effective mitigation option of methane(CH_(4))emissions from rice cultivation.Although its mitigation mechanisms are not well understood,the potential relevance of surface area and porosity of biochar has been discussed.This study aimed to evaluate the application of different biochar particle sizes on CH_(4) production,oxidation,and emissions from rice cultivation in a clay loam soil,based on the assumption that porosity and surface area of biochar are directly related to its mitigation effects.Rice was grown under greenhouse conditions for two growing seasons,either with 0.5–2 mm(small,SB)or with 2–4 mm(large,LB)biochar.The results show that both sizes of biochar increased soil pH and redox potential(Eh)during rice growth.Soil dissolved organic carbon(DOC),nitrate(NO^(−)_(3)),and sulfate(SO^(2−)_(4))also increased under both biochar amendments,but size effects were not observed.SB and LB suppressed the abundance of CH_(4) producers(methanogens)but stimulated the abundance of CH_(4) consumers(methanotrophs).The increase of soil Eh and electron acceptors(NO^(−)_(3)and SO^(2−)_(4))indicated the increase in soil oxidation capacity is a barrier to CH_(4) production by methanogens in both biochar treatments.Laboratory incubation experiments showed that CH_(4) production activity was significantly(p≤0.05)reduced by 18.5%using SB and by 11.3%using LB compared to the control.In contrast,the stimulation of methanotrophs promoted greater CH_(4) oxidation activity by 15.0%in SB and 18.7%in LB compared to the control.It shows that CH_(4) production was reduced more by larger surface area biochar(SB),while a greater increase in CH_(4) oxidation was found using larger pore volume biochar(LB).The effects on CH_(4) production were more pronounced than those on CH_(4) oxidation,resulting in a greater reduction of cumulative CH_(4) emissions by SB than LB(by 26.6%and 19.9%compared to control,respectively).
文摘In the present study nano-tungsten carbide particles were generated in a wire explosion process.The plasma generated during the wire explosion process was analyzed using optical emission spectroscopy(OES).The impact of ambient pressure on the plasma temperature,electron density and plasma lifetime was studied.Lifetime variations of the plasma produced under different experimental conditions were analyzed.The produced nanoparticles were characterized through wide angle X-ray diffraction(WAXD) and transmission electron microscopy(TEM) studies. Particles produced with a negative DC charging voltage had a larger mean size when compared to a positive charging voltage.Polarity dependence on the plasma duration was observed where plasma was sustained for a longer duration with a negative DC charging voltage.
文摘Particle emission during manufacturing processes, whether chemical, physical or mechanical can represent a serious danger for environment and for occupational safety. Especially machining processes, particle emission could have an important impact on shop floor air quality and might jeopardise workers’ health. It is therefore important to find ways of reducing the particle emission at the source of manufacturing processes. To do so, there is a need to know the size, the quantity and the distribution of particles produced by processes currently used in industry. In this study, investigations are done to compare the particle emission (PM2.5) when polishing two granites (black and white). The black granite contained low Si concentration (about 10% Si) and the white granite contained high Si concentration (about 50% Si). Particle emission was monitored using the DustTrak II equipment with 2.5 μm impactor. The particle grain size was evaluated using X-ray diffraction techniques. Machining conditions leading to the generation of finer particles were identified.
基金financial support received from Fonds Québécois de la Recherche sur la Nature et les Technologies (FQRNT)
文摘Titanium metal matrix composite(Ti-MMC)has excellent features and capabilities which can be considered a potential candidate to replace commercial titanium and superalloys within an extensive range of products and industrial sectors.Regardless of the superior features in Ti-MMC,however,referring to several factors including high unit cost and existence of rigid and abrasive ceramic particles in the generated matrices of the work part,the Ti-MMC is grouped as extremely difficult to cut with a poor level of machinability.Furthermore,adequate process parameters for machining Ti-MMCs under several lubrication methods are rarely studied.Therefore,adequate knowledge of this regard is strongly demanded.Among machinability attributes,ultrafine particles(UFPs)and fine particles(FPs)have been selected as the main machinability attributes and the factors leading to minimized emission have been studied.According to experimental observations,despite the type of coating used,the use of higher levels of flow rate led to less UFPs,while no significant effects were observed on UFPs.Under similar cutting conditions,higher levels of FPs were recorded under the use of uncoated inserts.Moreover,cutting speed had no significant influence on UFPs;nevertheless,it significantly affects the FPs despite the type of insert used.