The path of a light’s signal is one and the same in the universal space regardless of the inertial frame by which it is identified. However, only one frame can be taken stationary and identified with the universal sp...The path of a light’s signal is one and the same in the universal space regardless of the inertial frame by which it is identified. However, only one frame can be taken stationary and identified with the universal space while all other frames are moving. The direction of the path of a light’s pulse in a moving frame is determined in terms of its direction in the stationary one;the result is utilized to explain stellar aberration and show that the tilted direction in the moving frame depends only on its velocity. The aberration increment vector is introduced and employed to determine the apparent position of a star at each point of the earth orbit. Aberration in an earth satellite relative to the geocentric frame is presented. The direction’s change of a light beam between graded inertial frames promotes explaining aberration in an earth’s satellite in parallel to stellar aberration on earth.展开更多
The purpose of this research is to show that Foaucault pendulum as well as other Coriolis effects, which are normally studied in a rotating coordinate system, can also be analyzed in a fixed reference frame. To this e...The purpose of this research is to show that Foaucault pendulum as well as other Coriolis effects, which are normally studied in a rotating coordinate system, can also be analyzed in a fixed reference frame. To this end, Foucault pendulum and other Coriolis effects are studied in inertial reference frames. The approach is simple, yet rigorous, and the results are exactly the same as those obtained in non-inertial reference frames but without resorting to some of the assumptions that are needed in rotating coordinate systems.展开更多
We investigate the role of extended intrinsic mean spin tensor introduced in this work for turbulence modelling in a non-inertial frame of reference. It is described by the Euclidean group of transformations and, in p...We investigate the role of extended intrinsic mean spin tensor introduced in this work for turbulence modelling in a non-inertial frame of reference. It is described by the Euclidean group of transformations and, in particular, its significance and importance in the approach of the algebraic Reynolds stress modelling, such as in a nonlinear K-ε model. To this end and for illustration of the effect of extended intrinsic spin tensor on turbulence modelling, we examine several recently developed nonlinear K-ε models and compare their performance in predicting the homogeneous turbulent shear flow in a rotating frame of reference with LES data. Our results and analysis indicate that, only if the deficiencies of these models and the like be well understood and properly corrected, may in the near future, more sophisticated nonlinear K-ε models be developed to better predict complex turbulent flows in a non-inertial frame of reference.展开更多
The new variational principle of Gauss's form of nonlinear nonholonomic nonpotential system relative to non-inertial reference frame is established by constructing generalized inertial potentials. Naether's th...The new variational principle of Gauss's form of nonlinear nonholonomic nonpotential system relative to non-inertial reference frame is established by constructing generalized inertial potentials. Naether's theorem and Naether's inverse theorem of the system above is presented and proved. Finally, one example is given to illustrate the application.展开更多
An ultrafast framing camera with a pulse-dilation device,a microchannel plate(MCP)imager,and an electronic imaging system were reported.The camera achieved a temporal resolution of 10 ps by using a pulse-dilation devi...An ultrafast framing camera with a pulse-dilation device,a microchannel plate(MCP)imager,and an electronic imaging system were reported.The camera achieved a temporal resolution of 10 ps by using a pulse-dilation device and gated MCP imager,and a spatial resolution of 100μm by using an electronic imaging system comprising combined magnetic lenses.The spatial resolution characteristics of the camera were studied both theoretically and experimentally.The results showed that the camera with combined magnetic lenses reduced the field curvature and acquired a larger working area.A working area with a diameter of 53 mm was created by applying four magnetic lenses to the camera.Furthermore,the camera was used to detect the X-rays produced by the laser-targeting device.The diagnostic results indicated that the width of the X-ray pulse was approximately 18 ps.展开更多
In this paper tests by Maxwell and Gift that search for a preferred frame or ether arising from movement through that frame using Jupiter’s moon Io are reviewed and discussed. Unlike the Michelson-Morley second-order...In this paper tests by Maxwell and Gift that search for a preferred frame or ether arising from movement through that frame using Jupiter’s moon Io are reviewed and discussed. Unlike the Michelson-Morley second-order experiment which unsuccessfully attempted to detect the orbital motion of the Earth relative to the ether, these tests are both first-order and therefore are unaffected by the second-order effects of length contraction and clock retardation. The test by Maxwell utilizes the delay in the eclipse of Io as the Earth orbits the Sun in an attempt to detect ether drift resulting from the galactic movement of the Sun. This test requires a 6-year duration for its full execution and was never performed because of practical difficulties. The test first presented by Gift can be conducted over a few days and employs the observed variation of the period of Io as the Earth moves toward or away from Jupiter. The result is a positive detection of ether drift arising from the orbital motion of the Earth. The detected ether drift is evidence of a preferred frame which we argue corresponds to the solar system barycentric or sun-centered inertial (SCI) frame.展开更多
Modelling the turbulent flows in non-inertial frames of reference has long been a challenging task. Recently we introduced the notion of the "extended intrinsic mean spin tensor" for turbulence modelling and...Modelling the turbulent flows in non-inertial frames of reference has long been a challenging task. Recently we introduced the notion of the "extended intrinsic mean spin tensor" for turbulence modelling and pointed out that, when applying the Reynolds stress models developed in the inertial frame of reference to model-ling the turbulence in a non-inertial frame of reference, the mean spin tensor should be replaced by the extended intrinsic mean spin tensor to correctly account for the rotation effects induced by the non-inertial frame of reference, to conform in phys-ics with the Reynolds stress transport equation. To exemplify the approach, we conducted numerical simulations of the fully developed turbulent channel flow in a rotating frame of reference by employing four non-linear K-ε models. Our numerical results based on this approach at a wide range of Reynolds and Rossby numbers evince that, among the models tested, the non-linear K-ε model of Huang and Ma and the non-linear K-ε model of Craft, Launder and Suga can better capture the rotation effects and the resulting influence on the structures of turbulence, and therefore are satisfactorily applied to dealing with the turbulent flows of practical interest in engineering. The general approach worked out in this paper is also ap-plied to the second-moment closure and the large-eddy simulation of turbulence.展开更多
文摘The path of a light’s signal is one and the same in the universal space regardless of the inertial frame by which it is identified. However, only one frame can be taken stationary and identified with the universal space while all other frames are moving. The direction of the path of a light’s pulse in a moving frame is determined in terms of its direction in the stationary one;the result is utilized to explain stellar aberration and show that the tilted direction in the moving frame depends only on its velocity. The aberration increment vector is introduced and employed to determine the apparent position of a star at each point of the earth orbit. Aberration in an earth satellite relative to the geocentric frame is presented. The direction’s change of a light beam between graded inertial frames promotes explaining aberration in an earth’s satellite in parallel to stellar aberration on earth.
文摘The purpose of this research is to show that Foaucault pendulum as well as other Coriolis effects, which are normally studied in a rotating coordinate system, can also be analyzed in a fixed reference frame. To this end, Foucault pendulum and other Coriolis effects are studied in inertial reference frames. The approach is simple, yet rigorous, and the results are exactly the same as those obtained in non-inertial reference frames but without resorting to some of the assumptions that are needed in rotating coordinate systems.
文摘We investigate the role of extended intrinsic mean spin tensor introduced in this work for turbulence modelling in a non-inertial frame of reference. It is described by the Euclidean group of transformations and, in particular, its significance and importance in the approach of the algebraic Reynolds stress modelling, such as in a nonlinear K-ε model. To this end and for illustration of the effect of extended intrinsic spin tensor on turbulence modelling, we examine several recently developed nonlinear K-ε models and compare their performance in predicting the homogeneous turbulent shear flow in a rotating frame of reference with LES data. Our results and analysis indicate that, only if the deficiencies of these models and the like be well understood and properly corrected, may in the near future, more sophisticated nonlinear K-ε models be developed to better predict complex turbulent flows in a non-inertial frame of reference.
文摘The new variational principle of Gauss's form of nonlinear nonholonomic nonpotential system relative to non-inertial reference frame is established by constructing generalized inertial potentials. Naether's theorem and Naether's inverse theorem of the system above is presented and proved. Finally, one example is given to illustrate the application.
基金National Natural Science Foundation of China(NSFC)(No.11775147)Guangdong Basic and Applied Basic Research Foundation(Nos.2019A1515110130 and 2024A1515011832)+1 种基金Shenzhen Key Laboratory of Photonics and Biophotonics(ZDSYS20210623092006020)Shenzhen Science and Technology Program(Nos.JCYJ20210324095007020,JCYJ20200109105201936 and JCYJ20230808105019039).
文摘An ultrafast framing camera with a pulse-dilation device,a microchannel plate(MCP)imager,and an electronic imaging system were reported.The camera achieved a temporal resolution of 10 ps by using a pulse-dilation device and gated MCP imager,and a spatial resolution of 100μm by using an electronic imaging system comprising combined magnetic lenses.The spatial resolution characteristics of the camera were studied both theoretically and experimentally.The results showed that the camera with combined magnetic lenses reduced the field curvature and acquired a larger working area.A working area with a diameter of 53 mm was created by applying four magnetic lenses to the camera.Furthermore,the camera was used to detect the X-rays produced by the laser-targeting device.The diagnostic results indicated that the width of the X-ray pulse was approximately 18 ps.
文摘In this paper tests by Maxwell and Gift that search for a preferred frame or ether arising from movement through that frame using Jupiter’s moon Io are reviewed and discussed. Unlike the Michelson-Morley second-order experiment which unsuccessfully attempted to detect the orbital motion of the Earth relative to the ether, these tests are both first-order and therefore are unaffected by the second-order effects of length contraction and clock retardation. The test by Maxwell utilizes the delay in the eclipse of Io as the Earth orbits the Sun in an attempt to detect ether drift resulting from the galactic movement of the Sun. This test requires a 6-year duration for its full execution and was never performed because of practical difficulties. The test first presented by Gift can be conducted over a few days and employs the observed variation of the period of Io as the Earth moves toward or away from Jupiter. The result is a positive detection of ether drift arising from the orbital motion of the Earth. The detected ether drift is evidence of a preferred frame which we argue corresponds to the solar system barycentric or sun-centered inertial (SCI) frame.
文摘Modelling the turbulent flows in non-inertial frames of reference has long been a challenging task. Recently we introduced the notion of the "extended intrinsic mean spin tensor" for turbulence modelling and pointed out that, when applying the Reynolds stress models developed in the inertial frame of reference to model-ling the turbulence in a non-inertial frame of reference, the mean spin tensor should be replaced by the extended intrinsic mean spin tensor to correctly account for the rotation effects induced by the non-inertial frame of reference, to conform in phys-ics with the Reynolds stress transport equation. To exemplify the approach, we conducted numerical simulations of the fully developed turbulent channel flow in a rotating frame of reference by employing four non-linear K-ε models. Our numerical results based on this approach at a wide range of Reynolds and Rossby numbers evince that, among the models tested, the non-linear K-ε model of Huang and Ma and the non-linear K-ε model of Craft, Launder and Suga can better capture the rotation effects and the resulting influence on the structures of turbulence, and therefore are satisfactorily applied to dealing with the turbulent flows of practical interest in engineering. The general approach worked out in this paper is also ap-plied to the second-moment closure and the large-eddy simulation of turbulence.