期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Linearization of Emden Differential Equation via the Generalized Sundman Transformations
1
作者 Joel Mvendaga Orverem Yusuf Haruna +1 位作者 Bala Ma’aji Abdulhamid Magaji Yunbunga Adamu 《Advances in Pure Mathematics》 2021年第3期163-168,共6页
The Emden differential equation is one of the most widely studied and challenging nonlinear dynamics equations in literature. It finds applications in various areas of study such as celestial mechanics, fluid mechanic... The Emden differential equation is one of the most widely studied and challenging nonlinear dynamics equations in literature. It finds applications in various areas of study such as celestial mechanics, fluid mechanics, Steller structure, isothermal gas spheres, thermionic currents and so on. Because of the importance of the equation, the method of generalized Sundman transformation (GST) as proposed by Nakpim and Meleshko is used for linearizing the Emden differential equation. The Emden differential equation considered here is a modification of the equation given by Berkovic. The results obtained in this paper imply that the Emden equation cannot be linearized by a point transformation. The general solution of the modified Emden equation is also obtained. 展开更多
关键词 Emden Differential Equation Second Order Ordinary Differential Equation Generalized sundman Transformation LINEARIZATION
下载PDF
基于特殊函数法的Rayleigh-Plesset方程理论解研究
2
作者 郭凯涛 邵雪明 张凌新 《水动力学研究与进展(A辑)》 CSCD 北大核心 2022年第3期345-351,共7页
Rayleigh-Plesset方程是气泡动力学理论中的基本方程,描述了无限不可压缩流体中,球形气泡的运动,求解Rayleigh-Plesset方程对于进一步深入研究气泡生长、发展和溃灭具有重要意义。该文主要结合Sundman幂变换和特殊函数理论分析了无黏蒸... Rayleigh-Plesset方程是气泡动力学理论中的基本方程,描述了无限不可压缩流体中,球形气泡的运动,求解Rayleigh-Plesset方程对于进一步深入研究气泡生长、发展和溃灭具有重要意义。该文主要结合Sundman幂变换和特殊函数理论分析了无黏蒸汽泡的Rayleigh-Plesset方程的理论解。研究表明:蒸汽泡动力学演化规律可由超几何函数形式和Weierstrass椭圆函数形式解析表达,当不考虑表面张力时,两种函数均可表示蒸汽泡的演化规律;当考虑表面张力时,蒸汽泡的动力学演化可由部分Weierstrass椭圆函数表达。该文给出了蒸汽泡在两种情况下的参数解析解具体形式,结果表明:常压载荷下的蒸汽泡只能发生一次溃灭,且蒸汽泡的溃灭时间随流体表面张力的增大而减小。 展开更多
关键词 Rayleigh-Plesset方程 sundman变换 特殊函数 蒸汽泡
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部