期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于SNPE和SVM的人脸识别 被引量:4
1
作者 郭锋 吕凝 +1 位作者 陈绵书 刘丽丽 《计算机工程与应用》 CSCD 北大核心 2008年第9期202-204,216,共4页
在人脸识别方面,传统的特征提取方法大都是线性方法,不能很好保持样本的拓扑结构。分类方面,支持向量机能够尽量提高学习的泛化能力,防止过学习,是一种很好的分类器。提出了一种基于SNPE和SVM的人脸识别方法。采用有监督模式确定NPE算... 在人脸识别方面,传统的特征提取方法大都是线性方法,不能很好保持样本的拓扑结构。分类方面,支持向量机能够尽量提高学习的泛化能力,防止过学习,是一种很好的分类器。提出了一种基于SNPE和SVM的人脸识别方法。采用有监督模式确定NPE算法中的K值。SNPE算法旨在保持数据的局部流型结构,而且相对于近期提出的LLE算法,它能够适用于训练样本和测试样本,具有更大的实用型。结合两分类支持向量机级联模型进行人脸识别,在ORL人脸数据库上实验表明,算法具有稳健性、快速性等优点,实验效果令人满意。 展开更多
关键词 人脸识别 有监督近邻保持嵌入(snpe) 支持向量机(SVM)
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部