The irradiation damage in nickel-base alloy C-276 irradiated with 115 keV Ar ions from low to very high doses was investigated. Structural characterization was performed using transmission electron microscopy (TEM),...The irradiation damage in nickel-base alloy C-276 irradiated with 115 keV Ar ions from low to very high doses was investigated. Structural characterization was performed using transmission electron microscopy (TEM), grazing incident X-ray diffraction (GIXRD) and atomic force microscopy (AFM). High density of interstitial type dislocation loops could be observed at a dose level of around 2.75 displacements per atom (dpa). With the irradiation dose increased to 27.5 dpa, the average size of loops increased from 5 nm to 16 nm, while the density of the loops decreased from 1.4 × 1011/cm2 to 4.6 × 1010/cm2. When the irradiation dose reached 82.5 dpa, original grains were transformed into subgrains whose sizes observed from TEM were about 20-60 nm. The fragmentation of grains was confirmed by GIXRD. The mean subgrain size was 40 nm, which was obtained from the full width at half maximum (FWHM) of the X-ray diffraction lines using the Scherrer formula and Williamson formula. AFM micrographs showed that nanometer-sized hillocks formed at the dose of 82.5 dpa, which provided further evidence of grain fragmentation at a high irradiation dose.展开更多
基金supported by the National Basic Research Program of China (No. 2007CB209800)National Natural Science Foundation of China(Nos. 10775108, 11075119)the Fundamental Research Funds for the Central Universities (20102020201000013)
文摘The irradiation damage in nickel-base alloy C-276 irradiated with 115 keV Ar ions from low to very high doses was investigated. Structural characterization was performed using transmission electron microscopy (TEM), grazing incident X-ray diffraction (GIXRD) and atomic force microscopy (AFM). High density of interstitial type dislocation loops could be observed at a dose level of around 2.75 displacements per atom (dpa). With the irradiation dose increased to 27.5 dpa, the average size of loops increased from 5 nm to 16 nm, while the density of the loops decreased from 1.4 × 1011/cm2 to 4.6 × 1010/cm2. When the irradiation dose reached 82.5 dpa, original grains were transformed into subgrains whose sizes observed from TEM were about 20-60 nm. The fragmentation of grains was confirmed by GIXRD. The mean subgrain size was 40 nm, which was obtained from the full width at half maximum (FWHM) of the X-ray diffraction lines using the Scherrer formula and Williamson formula. AFM micrographs showed that nanometer-sized hillocks formed at the dose of 82.5 dpa, which provided further evidence of grain fragmentation at a high irradiation dose.