Convolutional neural networks depend on deep network architectures to extract accurate information for image super‐resolution.However,obtained information of these con-volutional neural networks cannot completely exp...Convolutional neural networks depend on deep network architectures to extract accurate information for image super‐resolution.However,obtained information of these con-volutional neural networks cannot completely express predicted high‐quality images for complex scenes.A dynamic network for image super‐resolution(DSRNet)is presented,which contains a residual enhancement block,wide enhancement block,feature refine-ment block and construction block.The residual enhancement block is composed of a residual enhanced architecture to facilitate hierarchical features for image super‐resolution.To enhance robustness of obtained super‐resolution model for complex scenes,a wide enhancement block achieves a dynamic architecture to learn more robust information to enhance applicability of an obtained super‐resolution model for varying scenes.To prevent interference of components in a wide enhancement block,a refine-ment block utilises a stacked architecture to accurately learn obtained features.Also,a residual learning operation is embedded in the refinement block to prevent long‐term dependency problem.Finally,a construction block is responsible for reconstructing high‐quality images.Designed heterogeneous architecture can not only facilitate richer structural information,but also be lightweight,which is suitable for mobile digital devices.Experimental results show that our method is more competitive in terms of performance,recovering time of image super‐resolution and complexity.The code of DSRNet can be obtained at https://github.com/hellloxiaotian/DSRNet.展开更多
High-resolution video transmission requires a substantial amount of bandwidth.In this paper,we present a novel video processing methodology that innovatively integrates region of interest(ROI)identification and super-...High-resolution video transmission requires a substantial amount of bandwidth.In this paper,we present a novel video processing methodology that innovatively integrates region of interest(ROI)identification and super-resolution enhancement.Our method commences with the accurate detection of ROIs within video sequences,followed by the application of advanced super-resolution techniques to these areas,thereby preserving visual quality while economizing on data transmission.To validate and benchmark our approach,we have curated a new gaming dataset tailored to evaluate the effectiveness of ROI-based super-resolution in practical applications.The proposed model architecture leverages the transformer network framework,guided by a carefully designed multi-task loss function,which facilitates concurrent learning and execution of both ROI identification and resolution enhancement tasks.This unified deep learning model exhibits remarkable performance in achieving super-resolution on our custom dataset.The implications of this research extend to optimizing low-bitrate video streaming scenarios.By selectively enhancing the resolution of critical regions in videos,our solution enables high-quality video delivery under constrained bandwidth conditions.Empirical results demonstrate a 15%reduction in transmission bandwidth compared to traditional super-resolution based compression methods,without any perceivable decline in visual quality.This work thus contributes to the advancement of video compression and enhancement technologies,offering an effective strategy for improving digital media delivery efficiency and user experience,especially in bandwidth-limited environments.The innovative integration of ROI identification and super-resolution presents promising avenues for future research and development in adaptive and intelligent video communication systems.展开更多
We report a comprehensive numerical study of super resolution (SR) structured illumination microscopy (SIM) utilizing the classic Heintzmann-Cremer SIM process and algorithm. In particular, we investigated the impact ...We report a comprehensive numerical study of super resolution (SR) structured illumination microscopy (SIM) utilizing the classic Heintzmann-Cremer SIM process and algorithm. In particular, we investigated the impact of the diffraction limit of the underlying imaging system on the optimal SIM grating frequency that can be used to obtain the highest SR enhancement with non-continuous spatial frequency support. Besides confirming the previous theoretical and experimental work that SR-SIM can achieve an enhancement close to 3 times the diffraction limit with grating pattern illuminations, we also observe and report a series of more subtle effects of SR-SIM with non-continuous spatial frequency support. Our simulations show that when the SIM grating frequency exceeds twice that of the diffraction limit, the higher SIM grating frequency can help achieve a higher SR enhancement for the underlying imaging systems whose diffraction limit is low, though this enhancement is obtained at the cost of losing resolution at some lower resolution targets. Our simulations also show that, for underlying imaging systems with high diffraction limits, however, SR-SIM grating frequencies above twice the diffraction limits tend to bring no significant extra enhancement. Furthermore, we observed that there exists a limit grating frequency above which the SR enhancement effect is lost, and the reconstructed images essentially have the same resolution as the one obtained directly from the underlying imaging system without using the SIM process.展开更多
Obtaining clear images of underwater scenes with descriptive details is an arduous task.Conventional imaging techniques fail to provide clear cut features and attributes that ultimately result in object recognition er...Obtaining clear images of underwater scenes with descriptive details is an arduous task.Conventional imaging techniques fail to provide clear cut features and attributes that ultimately result in object recognition errors.Consequently,a need for a system that produces clear images for underwater image study has been necessitated.To overcome problems in resolution and to make better use of the Super-Resolution(SR)method,this paper introduces a novel method that has been derived from the Alpha Generative Adversarial Network(AlphaGAN)model,named Alpha Super Resolution Generative Adversarial Network(AlphaSRGAN).The model put forth in this paper helps in enhancing the quality of underwater imagery and yields images with greater resolution and more concise details.Images undergo pre-processing before they are fed into a generator network that optimizes and reforms the structure of the network while enhancing the stability of the network that acts as the generator.After the images are processed by the generator network,they are passed through an adversarial method for training models.The dataset used in this paper to learn Single Image Super Resolution(SISR)is the USR 248 dataset.Training supervision is performed by an unprejudiced function that simultaneously scrutinizes and improves the image quality.Appraisal of images is done with reference to factors like local style information,global content and color.The dataset USR 248 which has a huge collection of images has been used for the study is composed of three collections of images—high(640×480)and low(80×60,160×120,and 320×240).Paired instances of different sizes—2×,4×and 8×—are also present in the dataset.Parameters like Mean Opinion Score(MOS),Peak Signal-to-Noise Ratio(PSNR),Structural Similarity(SSIM)and Underwater Image Quality Measure(UIQM)scores have been compared to validate the improved efficiency of our model when compared to existing works.展开更多
Limited by diffraction limit, low spatial resolution is one of the shortcomings of terahertz imaging. Low spatial resolution is also one of the reasons limiting the development of stress measurement using terahertz im...Limited by diffraction limit, low spatial resolution is one of the shortcomings of terahertz imaging. Low spatial resolution is also one of the reasons limiting the development of stress measurement using terahertz imaging. In this paper, the full-field stress measurement using Terahertz Time Domain Spectroscopy (THz-TDS) is combined with Super-Resolution Convolutional Neural Network (SRCNN) algorithm to obtain stress fields with high spatial resolution. A modulation model from a plane stress state to a THz-TDS signal is constructed. A large number of simulated sets are obtained to train the SRCNN model. By applying the trained SRCNN model to imaging the numerical and physical stress fields, the improved spatial resolution of stress field calculated from the captured THz-TDS signal is obtained.展开更多
Construction of high resolution images from low resolution sequences is often im- portant in surveillance applications. In this letter, an affine based multi-scale block-matching image registration algorithm is first ...Construction of high resolution images from low resolution sequences is often im- portant in surveillance applications. In this letter, an affine based multi-scale block-matching image registration algorithm is first proposed. The images to be registered are divided into overlapped blocks of different size according to its motions. The Least Square (LS) image reg- istration algorithm is extended to match the blocks. Then an object based Super Resolution (SR) scheme is designed, the Maximum A Priori (MAP) super resolution algorithm is extended to enhance the resolution of the interest objects. Experimental results show that the proposed multi-scale registration method provides more accurate registration between frames. Further more, the object based super resolution scheme shows an enhanced performance compared with the traditional MAP method.展开更多
Fluorescence polarization is related to the dipole orientation of chromophores,making fuores-cence polarization microscopy possible to_reveal structures and functions of tagged cellularorganelles and biological macrom...Fluorescence polarization is related to the dipole orientation of chromophores,making fuores-cence polarization microscopy possible to_reveal structures and functions of tagged cellularorganelles and biological macromolecules.Several recent super resolution techniques have beenapplied to fluorescence polarization microscopy,achieving dipole measurement at nanoscale.In this review,we summarize both difraction limited and super resolution fluorescence polari-zation microscopy techniques,as well as their applications in biological imaging.展开更多
Recently,satellite imagery has been widely applied in many areas.However,due to the limitations of hardware equipment and transmission bandwidth,the images received on the ground have low resolution and weak texture.I...Recently,satellite imagery has been widely applied in many areas.However,due to the limitations of hardware equipment and transmission bandwidth,the images received on the ground have low resolution and weak texture.In addition,since ground terminals have various resolutions and real-time playing requirements,it is essential to achieve arbitrary scale super-resolution(SR)of satellite images.In this paper,we propose an arbitrary scale SR network for satellite image reconstruction.First,we propose an arbitrary upscale module for satellite imagery that can map low-resolution satellite image features to arbitrary scale enlarged SR outputs.Second,we design an edge reinforcement module to enhance the highfrequency details in satellite images through a twobranch network.Finally,extensive upsample experiments on WHU-RS19 and NWPU-RESISC45 datasets and subsequent image segmentation experiments both show the superiority of our method over the counterparts.展开更多
The images captured by different observation station have different resolutions.The Helioseismic and Magnetic Imager(HMI:a part of the NASA Solar Dynamics Observatory SDO)has low-precision but wide coverage.And the Go...The images captured by different observation station have different resolutions.The Helioseismic and Magnetic Imager(HMI:a part of the NASA Solar Dynamics Observatory SDO)has low-precision but wide coverage.And the Goode Solar Telescope(GST,formerly known as the New Solar Telescope)at Big Bear Solar Observatory(BBSO)solar images has high precision but small coverage.The super-resolution can make the captured images become clearer,so it is wildly used in solar image processing.The traditional super-resolution methods,such as interpolation,often use single image’s feature to improve the image’s quality.The methods based on deep learning-based super-resolution image reconstruction algorithms have better quality,but small-scale features often become ambiguous.To solve this problem,a transitional amplification network structure is proposed.The network can use the two types images relationship to make the images clear.By adding a transition image with almost no difference between the source image and the target image,the transitional amplification training procedure includes three parts:transition image acquisition,transition network training with source images and transition images,and amplification network training with transition images and target images.In addition,the traditional evaluation indicators based on structural similarity(SSIM)and peak signal-to-noise ratio(PSNR)calculate the difference in pixel values and perform poorly in cross-type image reconstruction.The method based on feature matching can effectively evaluate the similarity and clarity of features.The experimental results show that the quality index of the reconstructed image is consistent with the visual effect.展开更多
Sparse representation has attracted extensive attention and performed well on image super-resolution(SR) in the last decade. However, many current image SR methods face the contradiction of detail recovery and artif...Sparse representation has attracted extensive attention and performed well on image super-resolution(SR) in the last decade. However, many current image SR methods face the contradiction of detail recovery and artifact suppression. We propose a multi-resolution dictionary learning(MRDL) model to solve this contradiction, and give a fast single image SR method based on the MRDL model. To obtain the MRDL model, we first extract multi-scale patches by using our proposed adaptive patch partition method(APPM). The APPM divides images into patches of different sizes according to their detail richness. Then, the multiresolution dictionary pairs, which contain structural primitives of various resolutions, can be trained from these multi-scale patches.Owing to the MRDL strategy, our SR algorithm not only recovers details well, with less jag and noise, but also significantly improves the computational efficiency. Experimental results validate that our algorithm performs better than other SR methods in evaluation metrics and visual perception.展开更多
In this paper,an iterative regularized super resolution (SR) algorithm considering non-Gaussian noise is proposed.Based on the assumption of a generalized Gaussian distribution for the contaminating noise,an lp norm i...In this paper,an iterative regularized super resolution (SR) algorithm considering non-Gaussian noise is proposed.Based on the assumption of a generalized Gaussian distribution for the contaminating noise,an lp norm is adopted to measure the data fidelity term in the cost function.In the meantime,a regularization functional defined in terms of the desired high resolution (HR) image is employed,which allows for the simultaneous determination of its value and the partly reconstructed image at each iteration step.The convergence is thoroughly studied.Simulation results show the effectiveness of the proposed algorithm as well as its superiority to conventional SR methods.展开更多
Compared with other methods, the chirp scaling (CS) algorithm is a novel one for compensating the range migration without any interpolation in SAR imaging. However, its resolution ability can't exceed that of Four...Compared with other methods, the chirp scaling (CS) algorithm is a novel one for compensating the range migration without any interpolation in SAR imaging. However, its resolution ability can't exceed that of Fourier transformation. To realize the super-resolution ability in the azimuth direction a chirp scaling Burg (CSB) algorithm is proposed in this paper, which can still reserve the advantage of avoiding any interpolation in the process of the two-dimensional space-variant correlation in the CS algorithm.展开更多
The smart grid is an evolving critical infrastructure,which combines renewable energy and the most advanced information and communication technologies to provide more economic and secure power supply services.To cope ...The smart grid is an evolving critical infrastructure,which combines renewable energy and the most advanced information and communication technologies to provide more economic and secure power supply services.To cope with the intermittency of ever-increasing renewable energy and ensure the security of the smart grid,state estimation,which serves as a basic tool for understanding the true states of a smart grid,should be performed with high frequency.More complete system state data are needed to support high-frequency state estimation.The data completeness problem for smart grid state estimation is therefore studied in this paper.The problem of improving data completeness by recovering highfrequency data from low-frequency data is formulated as a super resolution perception(SRP)problem in this paper.A novel machine-learning-based SRP approach is thereafter proposed.The proposed method,namely the Super Resolution Perception Net for State Estimation(SRPNSE),consists of three steps:feature extraction,information completion,and data reconstruction.Case studies have demonstrated the effectiveness and value of the proposed SRPNSE approach in recovering high-frequency data from low-frequency data for the state estimation.展开更多
With the vigorous development of mobile networks,the number of devices at the network edge is growing rapidly and the massive amount of data generated by the devices brings a huge challenge of response latency and com...With the vigorous development of mobile networks,the number of devices at the network edge is growing rapidly and the massive amount of data generated by the devices brings a huge challenge of response latency and communication burden.Existing resource monitoring systems are widely deployed in cloud data centers,but it is difficult for traditional resource monitoring solutions to handle the massive data generated by thousands of edge devices.To address these challenges,we propose a super resolution sensing(SRS)method for distributed resource monitoring,which can be used to recover reliable and accurate high‑frequency data from low‑frequency sampled resource monitoring data.Experiments based on the proposed SRS model are also conducted and the experimental results show that it can effectively reduce the errors generated when recovering low‑frequency monitoring data to high‑frequency data,and verify the effectiveness and practical value of applying SRS method for resource monitoring on edge clouds.展开更多
A novel image restoration scheme, which is super-resolution image restoration algorithm Poisson-maximum-afterword-probability based on Markvo constraint (MPMAP) combined with evaluating image detail parameter D, has b...A novel image restoration scheme, which is super-resolution image restoration algorithm Poisson-maximum-afterword-probability based on Markvo constraint (MPMAP) combined with evaluating image detail parameter D, has been proposed. The advantage of super-resolution algorithm MPMAP incorporated with parameter D lies in the fact that super-resolution algorithm MPMAP model is discrete, which is in accordance with remote-sensing imaging model, and the algorithm MPMAP is proved applicable to linear and non-linear imaging models with a unique solution when noise is not severe. According to simulation experiments for practical images, super-resolution algorithm MPMAP can retain image details better than most of traditional restoration methods; at the same time, the proposed parameter D can help to identify real point spread function (PSF) value of degradation process. Processing result of practical remote-sensing images by MPMAP combined with parameter D are given, it illustrates that MPMAP restoration scheme combined PSF estimation has a better restoration result than that of Photoshop processing, based on the same original images. It is proved that the proposed scheme is helpful to offset the lack of resolution of the original remote-sensing images and has its extensive application foreground.展开更多
Based on the mechanism of imagery, a novel method called the delaminating combining template method, used for the problem of super-resolution reconstruction from image sequence, is described in this paper. The combini...Based on the mechanism of imagery, a novel method called the delaminating combining template method, used for the problem of super-resolution reconstruction from image sequence, is described in this paper. The combining template method contains two steps: a delaminating strategy and a combining template algorithm. The delaminating strategy divides the original problem into several sub-problems; each of them is only eonnected to one degrading factor. The combining template algorithm is suggested to resolve each sub-problem. In addition, to verify the valid of the method, a new index called oriental entropy is presented. The results from the theoretical analysis and experiments illustrate that this method to be promising and efficient.展开更多
Research interest in multi-frame Superresolution has risen substantially in recent years. This paper presents a modified Projection Onto Convex Set (POCS) superresolution method based on wavelet transform. The metho...Research interest in multi-frame Superresolution has risen substantially in recent years. This paper presents a modified Projection Onto Convex Set (POCS) superresolution method based on wavelet transform. The method analyzes the image formation model from wavelet multiresolution analysis point of view and defines an closed convex set and its corresponding projection based on wavelet transform. An iterative procedure is utilized to reduce the estimated errors of the result image, and this guarantees the estimated image to lay in the intersection of different convex sets, thus produces a high resolution image with a reduced error. The effectiveness of the algorithm is demonstrated bv experimental results.展开更多
The midcourse ballistic closely spaced objects(CSO) create blur pixel-cluster on the space-based infrared focal plane,making the super-resolution of CSO quite necessary.A novel algorithm of CSO joint super-resolutio...The midcourse ballistic closely spaced objects(CSO) create blur pixel-cluster on the space-based infrared focal plane,making the super-resolution of CSO quite necessary.A novel algorithm of CSO joint super-resolution and trajectory estimation is presented.The algorithm combines the focal plane CSO dynamics and radiation models,proposes a novel least square objective function from the space and time information,where CSO radiant intensity is excluded and initial dynamics(position and velocity) are chosen as the model parameters.Subsequently,the quantum-behaved particle swarm optimization(QPSO) is adopted to optimize the objective function to estimate model parameters,and then CSO focal plane trajectories and radiant intensities are computed.Meanwhile,the estimated CSO focal plane trajectories from multiple space-based infrared focal planes are associated and filtered to estimate the CSO stereo ballistic trajectories.Finally,the performance(CSO estimation precision of the focal plane coordinates,radiant intensities,and stereo ballistic trajectories,together with the computation load) of the algorithm is tested,and the results show that the algorithm is effective and feasible.展开更多
To achieve restoration of high frequency information for an undersampled and degraded low-resolution image, a nonlinear and real-time processing method-the radial basis function (RBF) neural network based super-resolu...To achieve restoration of high frequency information for an undersampled and degraded low-resolution image, a nonlinear and real-time processing method-the radial basis function (RBF) neural network based super-resolution method of restoration is proposed. The RBF network configuration and processing method is suitable for a high resolution restoration from an undersampled low-resolution image. The soft-competition learning scheme based on the k-means algorithm is used, and can achieve higher mapping approximation accuracy without increase in the network size. Experiments showed that the proposed algorithm can achieve a super-resolution restored image from an undersampled and degraded low-resolution image, and requires a shorter training time when compared with the multiplayer perception (MLP) network.展开更多
基金the TCL Science and Technology Innovation Fundthe Youth Science and Technology Talent Promotion Project of Jiangsu Association for Science and Technology,Grant/Award Number:JSTJ‐2023‐017+4 种基金Shenzhen Municipal Science and Technology Innovation Council,Grant/Award Number:JSGG20220831105002004National Natural Science Foundation of China,Grant/Award Number:62201468Postdoctoral Research Foundation of China,Grant/Award Number:2022M722599the Fundamental Research Funds for the Central Universities,Grant/Award Number:D5000210966the Guangdong Basic and Applied Basic Research Foundation,Grant/Award Number:2021A1515110079。
文摘Convolutional neural networks depend on deep network architectures to extract accurate information for image super‐resolution.However,obtained information of these con-volutional neural networks cannot completely express predicted high‐quality images for complex scenes.A dynamic network for image super‐resolution(DSRNet)is presented,which contains a residual enhancement block,wide enhancement block,feature refine-ment block and construction block.The residual enhancement block is composed of a residual enhanced architecture to facilitate hierarchical features for image super‐resolution.To enhance robustness of obtained super‐resolution model for complex scenes,a wide enhancement block achieves a dynamic architecture to learn more robust information to enhance applicability of an obtained super‐resolution model for varying scenes.To prevent interference of components in a wide enhancement block,a refine-ment block utilises a stacked architecture to accurately learn obtained features.Also,a residual learning operation is embedded in the refinement block to prevent long‐term dependency problem.Finally,a construction block is responsible for reconstructing high‐quality images.Designed heterogeneous architecture can not only facilitate richer structural information,but also be lightweight,which is suitable for mobile digital devices.Experimental results show that our method is more competitive in terms of performance,recovering time of image super‐resolution and complexity.The code of DSRNet can be obtained at https://github.com/hellloxiaotian/DSRNet.
基金funded by National Key Research and Development Program of China(No.2022YFC3302103).
文摘High-resolution video transmission requires a substantial amount of bandwidth.In this paper,we present a novel video processing methodology that innovatively integrates region of interest(ROI)identification and super-resolution enhancement.Our method commences with the accurate detection of ROIs within video sequences,followed by the application of advanced super-resolution techniques to these areas,thereby preserving visual quality while economizing on data transmission.To validate and benchmark our approach,we have curated a new gaming dataset tailored to evaluate the effectiveness of ROI-based super-resolution in practical applications.The proposed model architecture leverages the transformer network framework,guided by a carefully designed multi-task loss function,which facilitates concurrent learning and execution of both ROI identification and resolution enhancement tasks.This unified deep learning model exhibits remarkable performance in achieving super-resolution on our custom dataset.The implications of this research extend to optimizing low-bitrate video streaming scenarios.By selectively enhancing the resolution of critical regions in videos,our solution enables high-quality video delivery under constrained bandwidth conditions.Empirical results demonstrate a 15%reduction in transmission bandwidth compared to traditional super-resolution based compression methods,without any perceivable decline in visual quality.This work thus contributes to the advancement of video compression and enhancement technologies,offering an effective strategy for improving digital media delivery efficiency and user experience,especially in bandwidth-limited environments.The innovative integration of ROI identification and super-resolution presents promising avenues for future research and development in adaptive and intelligent video communication systems.
文摘We report a comprehensive numerical study of super resolution (SR) structured illumination microscopy (SIM) utilizing the classic Heintzmann-Cremer SIM process and algorithm. In particular, we investigated the impact of the diffraction limit of the underlying imaging system on the optimal SIM grating frequency that can be used to obtain the highest SR enhancement with non-continuous spatial frequency support. Besides confirming the previous theoretical and experimental work that SR-SIM can achieve an enhancement close to 3 times the diffraction limit with grating pattern illuminations, we also observe and report a series of more subtle effects of SR-SIM with non-continuous spatial frequency support. Our simulations show that when the SIM grating frequency exceeds twice that of the diffraction limit, the higher SIM grating frequency can help achieve a higher SR enhancement for the underlying imaging systems whose diffraction limit is low, though this enhancement is obtained at the cost of losing resolution at some lower resolution targets. Our simulations also show that, for underlying imaging systems with high diffraction limits, however, SR-SIM grating frequencies above twice the diffraction limits tend to bring no significant extra enhancement. Furthermore, we observed that there exists a limit grating frequency above which the SR enhancement effect is lost, and the reconstructed images essentially have the same resolution as the one obtained directly from the underlying imaging system without using the SIM process.
文摘Obtaining clear images of underwater scenes with descriptive details is an arduous task.Conventional imaging techniques fail to provide clear cut features and attributes that ultimately result in object recognition errors.Consequently,a need for a system that produces clear images for underwater image study has been necessitated.To overcome problems in resolution and to make better use of the Super-Resolution(SR)method,this paper introduces a novel method that has been derived from the Alpha Generative Adversarial Network(AlphaGAN)model,named Alpha Super Resolution Generative Adversarial Network(AlphaSRGAN).The model put forth in this paper helps in enhancing the quality of underwater imagery and yields images with greater resolution and more concise details.Images undergo pre-processing before they are fed into a generator network that optimizes and reforms the structure of the network while enhancing the stability of the network that acts as the generator.After the images are processed by the generator network,they are passed through an adversarial method for training models.The dataset used in this paper to learn Single Image Super Resolution(SISR)is the USR 248 dataset.Training supervision is performed by an unprejudiced function that simultaneously scrutinizes and improves the image quality.Appraisal of images is done with reference to factors like local style information,global content and color.The dataset USR 248 which has a huge collection of images has been used for the study is composed of three collections of images—high(640×480)and low(80×60,160×120,and 320×240).Paired instances of different sizes—2×,4×and 8×—are also present in the dataset.Parameters like Mean Opinion Score(MOS),Peak Signal-to-Noise Ratio(PSNR),Structural Similarity(SSIM)and Underwater Image Quality Measure(UIQM)scores have been compared to validate the improved efficiency of our model when compared to existing works.
文摘Limited by diffraction limit, low spatial resolution is one of the shortcomings of terahertz imaging. Low spatial resolution is also one of the reasons limiting the development of stress measurement using terahertz imaging. In this paper, the full-field stress measurement using Terahertz Time Domain Spectroscopy (THz-TDS) is combined with Super-Resolution Convolutional Neural Network (SRCNN) algorithm to obtain stress fields with high spatial resolution. A modulation model from a plane stress state to a THz-TDS signal is constructed. A large number of simulated sets are obtained to train the SRCNN model. By applying the trained SRCNN model to imaging the numerical and physical stress fields, the improved spatial resolution of stress field calculated from the captured THz-TDS signal is obtained.
基金Supported by the National Natural Science Founda-tion of China (No.60472036)the Beijing Natural Science Foundation (No.4052007)the Beijing Novel Program (No.2005B08).
文摘Construction of high resolution images from low resolution sequences is often im- portant in surveillance applications. In this letter, an affine based multi-scale block-matching image registration algorithm is first proposed. The images to be registered are divided into overlapped blocks of different size according to its motions. The Least Square (LS) image reg- istration algorithm is extended to match the blocks. Then an object based Super Resolution (SR) scheme is designed, the Maximum A Priori (MAP) super resolution algorithm is extended to enhance the resolution of the interest objects. Experimental results show that the proposed multi-scale registration method provides more accurate registration between frames. Further more, the object based super resolution scheme shows an enhanced performance compared with the traditional MAP method.
基金supported by the National Instrument Development Special Program(2013YQ03065102)the Natural Science Foundation of China(614-75010,61428501)Science and Technology Commission of Shanghai Municipality(16DZ-1100300).
文摘Fluorescence polarization is related to the dipole orientation of chromophores,making fuores-cence polarization microscopy possible to_reveal structures and functions of tagged cellularorganelles and biological macromolecules.Several recent super resolution techniques have beenapplied to fluorescence polarization microscopy,achieving dipole measurement at nanoscale.In this review,we summarize both difraction limited and super resolution fluorescence polari-zation microscopy techniques,as well as their applications in biological imaging.
基金supported in part by the National Natural Science Foundation of China(NSFC)under Grant 91738302,Grant 62102423,Grant 61671332,and Grant U1736206in part by the Open Research Fund of State Key Laboratory of Information Engineering in Surveying,Mapping and Remote Sensing,Wuhan University under Grant 17E03.
文摘Recently,satellite imagery has been widely applied in many areas.However,due to the limitations of hardware equipment and transmission bandwidth,the images received on the ground have low resolution and weak texture.In addition,since ground terminals have various resolutions and real-time playing requirements,it is essential to achieve arbitrary scale super-resolution(SR)of satellite images.In this paper,we propose an arbitrary scale SR network for satellite image reconstruction.First,we propose an arbitrary upscale module for satellite imagery that can map low-resolution satellite image features to arbitrary scale enlarged SR outputs.Second,we design an edge reinforcement module to enhance the highfrequency details in satellite images through a twobranch network.Finally,extensive upsample experiments on WHU-RS19 and NWPU-RESISC45 datasets and subsequent image segmentation experiments both show the superiority of our method over the counterparts.
基金This work was supported in part by CAS Key Laboratory of Solar Activity,National Astronomical Observatories Commission for Collaborating Research Program(CRP)(No:KLSA202114)National Science Foundation Project of P.R.China under Grant No.61701554+2 种基金the cross-discipline research project of Minzu University of China(2020MDJC08)State Language Commission Key Project(ZDl135-39)Promotion plan for young teachers scientific research ability of Minzu University of China,MUC 111 Project,First class courses(Digital Image Processing KC2066).
文摘The images captured by different observation station have different resolutions.The Helioseismic and Magnetic Imager(HMI:a part of the NASA Solar Dynamics Observatory SDO)has low-precision but wide coverage.And the Goode Solar Telescope(GST,formerly known as the New Solar Telescope)at Big Bear Solar Observatory(BBSO)solar images has high precision but small coverage.The super-resolution can make the captured images become clearer,so it is wildly used in solar image processing.The traditional super-resolution methods,such as interpolation,often use single image’s feature to improve the image’s quality.The methods based on deep learning-based super-resolution image reconstruction algorithms have better quality,but small-scale features often become ambiguous.To solve this problem,a transitional amplification network structure is proposed.The network can use the two types images relationship to make the images clear.By adding a transition image with almost no difference between the source image and the target image,the transitional amplification training procedure includes three parts:transition image acquisition,transition network training with source images and transition images,and amplification network training with transition images and target images.In addition,the traditional evaluation indicators based on structural similarity(SSIM)and peak signal-to-noise ratio(PSNR)calculate the difference in pixel values and perform poorly in cross-type image reconstruction.The method based on feature matching can effectively evaluate the similarity and clarity of features.The experimental results show that the quality index of the reconstructed image is consistent with the visual effect.
文摘Sparse representation has attracted extensive attention and performed well on image super-resolution(SR) in the last decade. However, many current image SR methods face the contradiction of detail recovery and artifact suppression. We propose a multi-resolution dictionary learning(MRDL) model to solve this contradiction, and give a fast single image SR method based on the MRDL model. To obtain the MRDL model, we first extract multi-scale patches by using our proposed adaptive patch partition method(APPM). The APPM divides images into patches of different sizes according to their detail richness. Then, the multiresolution dictionary pairs, which contain structural primitives of various resolutions, can be trained from these multi-scale patches.Owing to the MRDL strategy, our SR algorithm not only recovers details well, with less jag and noise, but also significantly improves the computational efficiency. Experimental results validate that our algorithm performs better than other SR methods in evaluation metrics and visual perception.
基金National Natural Science Foundations of China(No.60705012,No.60802025)
文摘In this paper,an iterative regularized super resolution (SR) algorithm considering non-Gaussian noise is proposed.Based on the assumption of a generalized Gaussian distribution for the contaminating noise,an lp norm is adopted to measure the data fidelity term in the cost function.In the meantime,a regularization functional defined in terms of the desired high resolution (HR) image is employed,which allows for the simultaneous determination of its value and the partly reconstructed image at each iteration step.The convergence is thoroughly studied.Simulation results show the effectiveness of the proposed algorithm as well as its superiority to conventional SR methods.
文摘Compared with other methods, the chirp scaling (CS) algorithm is a novel one for compensating the range migration without any interpolation in SAR imaging. However, its resolution ability can't exceed that of Fourier transformation. To realize the super-resolution ability in the azimuth direction a chirp scaling Burg (CSB) algorithm is proposed in this paper, which can still reserve the advantage of avoiding any interpolation in the process of the two-dimensional space-variant correlation in the CS algorithm.
基金the Training Program of the Major Research Plan of the National Natural Science Foundation of China(91746118)the Shenzhen Municipal Science and Technology Innovation Committee Basic Research project(JCYJ20170410172224515)。
文摘The smart grid is an evolving critical infrastructure,which combines renewable energy and the most advanced information and communication technologies to provide more economic and secure power supply services.To cope with the intermittency of ever-increasing renewable energy and ensure the security of the smart grid,state estimation,which serves as a basic tool for understanding the true states of a smart grid,should be performed with high frequency.More complete system state data are needed to support high-frequency state estimation.The data completeness problem for smart grid state estimation is therefore studied in this paper.The problem of improving data completeness by recovering highfrequency data from low-frequency data is formulated as a super resolution perception(SRP)problem in this paper.A novel machine-learning-based SRP approach is thereafter proposed.The proposed method,namely the Super Resolution Perception Net for State Estimation(SRPNSE),consists of three steps:feature extraction,information completion,and data reconstruction.Case studies have demonstrated the effectiveness and value of the proposed SRPNSE approach in recovering high-frequency data from low-frequency data for the state estimation.
文摘With the vigorous development of mobile networks,the number of devices at the network edge is growing rapidly and the massive amount of data generated by the devices brings a huge challenge of response latency and communication burden.Existing resource monitoring systems are widely deployed in cloud data centers,but it is difficult for traditional resource monitoring solutions to handle the massive data generated by thousands of edge devices.To address these challenges,we propose a super resolution sensing(SRS)method for distributed resource monitoring,which can be used to recover reliable and accurate high‑frequency data from low‑frequency sampled resource monitoring data.Experiments based on the proposed SRS model are also conducted and the experimental results show that it can effectively reduce the errors generated when recovering low‑frequency monitoring data to high‑frequency data,and verify the effectiveness and practical value of applying SRS method for resource monitoring on edge clouds.
文摘A novel image restoration scheme, which is super-resolution image restoration algorithm Poisson-maximum-afterword-probability based on Markvo constraint (MPMAP) combined with evaluating image detail parameter D, has been proposed. The advantage of super-resolution algorithm MPMAP incorporated with parameter D lies in the fact that super-resolution algorithm MPMAP model is discrete, which is in accordance with remote-sensing imaging model, and the algorithm MPMAP is proved applicable to linear and non-linear imaging models with a unique solution when noise is not severe. According to simulation experiments for practical images, super-resolution algorithm MPMAP can retain image details better than most of traditional restoration methods; at the same time, the proposed parameter D can help to identify real point spread function (PSF) value of degradation process. Processing result of practical remote-sensing images by MPMAP combined with parameter D are given, it illustrates that MPMAP restoration scheme combined PSF estimation has a better restoration result than that of Photoshop processing, based on the same original images. It is proved that the proposed scheme is helpful to offset the lack of resolution of the original remote-sensing images and has its extensive application foreground.
文摘Based on the mechanism of imagery, a novel method called the delaminating combining template method, used for the problem of super-resolution reconstruction from image sequence, is described in this paper. The combining template method contains two steps: a delaminating strategy and a combining template algorithm. The delaminating strategy divides the original problem into several sub-problems; each of them is only eonnected to one degrading factor. The combining template algorithm is suggested to resolve each sub-problem. In addition, to verify the valid of the method, a new index called oriental entropy is presented. The results from the theoretical analysis and experiments illustrate that this method to be promising and efficient.
基金supported by China Postdoctoral Science Foundation(2015M582355)the Doctor Scientific Research Start Project from Hubei University of Science and Technology(BK1418)National Natural Science Foundation of China(61271256)
文摘Research interest in multi-frame Superresolution has risen substantially in recent years. This paper presents a modified Projection Onto Convex Set (POCS) superresolution method based on wavelet transform. The method analyzes the image formation model from wavelet multiresolution analysis point of view and defines an closed convex set and its corresponding projection based on wavelet transform. An iterative procedure is utilized to reduce the estimated errors of the result image, and this guarantees the estimated image to lay in the intersection of different convex sets, thus produces a high resolution image with a reduced error. The effectiveness of the algorithm is demonstrated bv experimental results.
基金supported by China Postdoctoral Science Foundation(20080149320080430223)the Natural Science Foundation of An-hui Province (090412043)
文摘The midcourse ballistic closely spaced objects(CSO) create blur pixel-cluster on the space-based infrared focal plane,making the super-resolution of CSO quite necessary.A novel algorithm of CSO joint super-resolution and trajectory estimation is presented.The algorithm combines the focal plane CSO dynamics and radiation models,proposes a novel least square objective function from the space and time information,where CSO radiant intensity is excluded and initial dynamics(position and velocity) are chosen as the model parameters.Subsequently,the quantum-behaved particle swarm optimization(QPSO) is adopted to optimize the objective function to estimate model parameters,and then CSO focal plane trajectories and radiant intensities are computed.Meanwhile,the estimated CSO focal plane trajectories from multiple space-based infrared focal planes are associated and filtered to estimate the CSO stereo ballistic trajectories.Finally,the performance(CSO estimation precision of the focal plane coordinates,radiant intensities,and stereo ballistic trajectories,together with the computation load) of the algorithm is tested,and the results show that the algorithm is effective and feasible.
文摘To achieve restoration of high frequency information for an undersampled and degraded low-resolution image, a nonlinear and real-time processing method-the radial basis function (RBF) neural network based super-resolution method of restoration is proposed. The RBF network configuration and processing method is suitable for a high resolution restoration from an undersampled low-resolution image. The soft-competition learning scheme based on the k-means algorithm is used, and can achieve higher mapping approximation accuracy without increase in the network size. Experiments showed that the proposed algorithm can achieve a super-resolution restored image from an undersampled and degraded low-resolution image, and requires a shorter training time when compared with the multiplayer perception (MLP) network.