This study was conducted to investigate the effects of soilless substrates of hydroponically grown long-mat seedlings (HLMS) on seedling quality and field growth characteristics of transplanted super japonica rice. ...This study was conducted to investigate the effects of soilless substrates of hydroponically grown long-mat seedlings (HLMS) on seedling quality and field growth characteristics of transplanted super japonica rice. A widely grown conventional super japonica rice cultivar (Wuyunjing 23) was selected as the test material. The effect of HLMS on seedling quality, mechanical transplantation quality, field growth characteristics, yield, and benefit-cost ratio were compared with seedlings grown in organic substrates and traditional nutritive soil, whJch was selected as the control. Root number, root twJstJng power and root activity of seedlings cultivated by HLMS were decreased compared to that of the organic substrates andcontrol. However, seedling root length as well as aboveground growth were increased compared to the organic substrates and control seed- lings. In the HLMS, the content of gibberellin acid (GA3) decreased while abscisic acid (ABA) content increased compared to that of the organic substrates and control seedlings. During the early stages after transplanting, the re-greening of HLMS was delayed compared to that of the organic substrates and control seedlings. Nevertheless, there were no significant differences in tiller dynamics and crop yield among the HLMS, organic substrates and control treatments. The effects of HLMS on seedling production were similar to those of the organic substrates and traditional nutritive soil in the present study, suggesting that HLMS have the potential to replace traditional nutritive soil in seedling production without decreasing crop yield. Finally, it is important to reduce organic substrates and topsoil dependence during rice seedling production and worthwhile to consider HLMS popularization and its application on a larger scale.展开更多
Salicylic acid (SA) was an essential component of the plant resistance to pathogens and also plays an important role in mediating plant response to some abiotic stress. The possible effects of SA on the growth and H...Salicylic acid (SA) was an essential component of the plant resistance to pathogens and also plays an important role in mediating plant response to some abiotic stress. The possible effects of SA on the growth and H2O2-metabolizing enzymes in rice seedlings under lead stress were studied. When rice seedlings grown in nutrient solution containing Pb^2+ (0, 0.05, 0.15, 0.25 mmol/L) for 18 d, the plant biomass as well as the chlorophyll content of leaves decreased with increasing Pb concentration. The pre-treatment with SA (treated with 0.1 mmol/L SA for 48 h before Pb stress) partially protected seedlings from Pb toxicity. The chlorophyll contents were significant higher in leaves of Pb-exposed with SA pre-treatment seedlings than in Pb-exposed plants at the same Pb intensity. SA pre-treated alone could significantly increase the length of shoot and root of seedlings but the vigour difference was not marked under long-term exposure to Pb toxicity. SA pre-treated influence the H2O2 level in leaves of seedlings by up-regulating the activity of superoxide dismutase (SOD), repressing the activity of catalase (CAT) and ascorbate peroxidase (APX) depending on the concentrations of Pb^2+ in the growth medium. The results supported the conclusion that SA played a positive role in rice seedlings against Pb toxicity.展开更多
A mutant of spikelet differentiation in rice called frizzle panicle (fzp) was discovered in the progeny of a cross between Oryza sativa ssp. indica cv. V20B and cv. Hua1B. The mutant ex-hibits normal plant morphology ...A mutant of spikelet differentiation in rice called frizzle panicle (fzp) was discovered in the progeny of a cross between Oryza sativa ssp. indica cv. V20B and cv. Hua1B. The mutant ex-hibits normal plant morphology but has apparently fewer tillers. The most striking change in fzp is that its spikelet differentiation is completely blocked, with unlimited subsequent rachis branches generated from the positions where spikelets normally develop in wild-type plants. Genetic analy-sis suggests that fzp is controlled by a single recessive gene, which is temporarily named fzp (t). Based on its mutant phenotype, fzp (t) represents a key gene controlling spikelet differentiation. Some F2 mutant plants derived from various genetic background appeared as the middle type? suggesting that the action of fzp (t) is influenced by the presence of redundant, modifier or interac-tive genes. By using simple sequence repeat (SSR) markers and bulked segregant analysis (BSA) method, fzp (t) gene was mapped in the terminal region of the long arm of chromosome 7, with RM172 and RM248 on one side, 3.2 cM and 6.4 cM from fzp (t), and RM18 and RM234 on the other side, 23.1 cM and 26.3 cM from fzp(t), respectively. These results will facilitate the positional cloning and function studies of the gene.展开更多
The wide compatibility gene, S 5 n , can overcome embryo sac sterility between indica and japonica subspecies of rice. Therefore, it is very important to characterize the features of the S 5 n sequence to reveal the o...The wide compatibility gene, S 5 n , can overcome embryo sac sterility between indica and japonica subspecies of rice. Therefore, it is very important to characterize the features of the S 5 n sequence to reveal the origin and evolution of S 5 n . In this paper, 26 cultivated rice haplotypes and 22 wild rice accessions harboring S 5 n were used to sequence S 5 n . The results showed that 15 genotypes among the 48 materials were fully consistent with control cultivar 02428 (CK). The other 33 accessions had different degrees of variation in the S 5 n sequence. Variations in the coding region mainly occurred in the second exon and eight materials showed a 10-bp deletion at 1710–1719 bp, including wild (O. nivara) and cultivated rice, such as IRW501 and Yuetai B. S 5 n sequences were not biased and evolved neutrally. The 48 materials could be divided into 4 categories using a phylogenetic tree of the amino acid sequences. Most of the wild rice clustered together, and the cultivated rice clustered into another group. Eight cultivated rice and O. nivara (wild rice) clustered in another group, which were found to lack 10 consecutive bases in exon 2. Eight rice varieties with high numbers of differences in their S 5 n coding regions were crossed with testers (typically indica and japonica) to produced test cross F 1 populations. The F 1 s were examined for their ability to overcome indica-japonica hybrid sterility. The result showed that the embryo sac fertility of S 5 n -containing hybrids increased significantly compared with control hybrids, but there were no differences among the materials with divergent sequences, indirectly proving that S 5 n is a non-functional gene.展开更多
基金provided by the National Key Technologies R&D Program of China during the 12th Five-Year Plan period(2016YFD0300505 and 2015BAD01B03)the Public Welfare and Industry,Ministry of Agriculture,China(201403039 and 201303102)the Fundamental Research Funds for the Central Universities,China(KYTZ201402)
文摘This study was conducted to investigate the effects of soilless substrates of hydroponically grown long-mat seedlings (HLMS) on seedling quality and field growth characteristics of transplanted super japonica rice. A widely grown conventional super japonica rice cultivar (Wuyunjing 23) was selected as the test material. The effect of HLMS on seedling quality, mechanical transplantation quality, field growth characteristics, yield, and benefit-cost ratio were compared with seedlings grown in organic substrates and traditional nutritive soil, whJch was selected as the control. Root number, root twJstJng power and root activity of seedlings cultivated by HLMS were decreased compared to that of the organic substrates andcontrol. However, seedling root length as well as aboveground growth were increased compared to the organic substrates and control seed- lings. In the HLMS, the content of gibberellin acid (GA3) decreased while abscisic acid (ABA) content increased compared to that of the organic substrates and control seedlings. During the early stages after transplanting, the re-greening of HLMS was delayed compared to that of the organic substrates and control seedlings. Nevertheless, there were no significant differences in tiller dynamics and crop yield among the HLMS, organic substrates and control treatments. The effects of HLMS on seedling production were similar to those of the organic substrates and traditional nutritive soil in the present study, suggesting that HLMS have the potential to replace traditional nutritive soil in seedling production without decreasing crop yield. Finally, it is important to reduce organic substrates and topsoil dependence during rice seedling production and worthwhile to consider HLMS popularization and its application on a larger scale.
基金Project supported by the National Key Basic Research and Development Program (No. 2002CB410804) the National Natural Science Foundation of China (No. 30671255).
文摘Salicylic acid (SA) was an essential component of the plant resistance to pathogens and also plays an important role in mediating plant response to some abiotic stress. The possible effects of SA on the growth and H2O2-metabolizing enzymes in rice seedlings under lead stress were studied. When rice seedlings grown in nutrient solution containing Pb^2+ (0, 0.05, 0.15, 0.25 mmol/L) for 18 d, the plant biomass as well as the chlorophyll content of leaves decreased with increasing Pb concentration. The pre-treatment with SA (treated with 0.1 mmol/L SA for 48 h before Pb stress) partially protected seedlings from Pb toxicity. The chlorophyll contents were significant higher in leaves of Pb-exposed with SA pre-treatment seedlings than in Pb-exposed plants at the same Pb intensity. SA pre-treated alone could significantly increase the length of shoot and root of seedlings but the vigour difference was not marked under long-term exposure to Pb toxicity. SA pre-treated influence the H2O2 level in leaves of seedlings by up-regulating the activity of superoxide dismutase (SOD), repressing the activity of catalase (CAT) and ascorbate peroxidase (APX) depending on the concentrations of Pb^2+ in the growth medium. The results supported the conclusion that SA played a positive role in rice seedlings against Pb toxicity.
基金supported by the Tenth Five-year National High Technology Research and Development Program of China(863 2001AA222271)partly by the State Key Basic Research and Development Program of China(G1999011602).
文摘A mutant of spikelet differentiation in rice called frizzle panicle (fzp) was discovered in the progeny of a cross between Oryza sativa ssp. indica cv. V20B and cv. Hua1B. The mutant ex-hibits normal plant morphology but has apparently fewer tillers. The most striking change in fzp is that its spikelet differentiation is completely blocked, with unlimited subsequent rachis branches generated from the positions where spikelets normally develop in wild-type plants. Genetic analy-sis suggests that fzp is controlled by a single recessive gene, which is temporarily named fzp (t). Based on its mutant phenotype, fzp (t) represents a key gene controlling spikelet differentiation. Some F2 mutant plants derived from various genetic background appeared as the middle type? suggesting that the action of fzp (t) is influenced by the presence of redundant, modifier or interac-tive genes. By using simple sequence repeat (SSR) markers and bulked segregant analysis (BSA) method, fzp (t) gene was mapped in the terminal region of the long arm of chromosome 7, with RM172 and RM248 on one side, 3.2 cM and 6.4 cM from fzp (t), and RM18 and RM234 on the other side, 23.1 cM and 26.3 cM from fzp(t), respectively. These results will facilitate the positional cloning and function studies of the gene.
基金supported by the National Natural Science Foundation of China (30971756)National Natural Science Foundation of China-Joint Fund with Guangdong (U0631003)
文摘The wide compatibility gene, S 5 n , can overcome embryo sac sterility between indica and japonica subspecies of rice. Therefore, it is very important to characterize the features of the S 5 n sequence to reveal the origin and evolution of S 5 n . In this paper, 26 cultivated rice haplotypes and 22 wild rice accessions harboring S 5 n were used to sequence S 5 n . The results showed that 15 genotypes among the 48 materials were fully consistent with control cultivar 02428 (CK). The other 33 accessions had different degrees of variation in the S 5 n sequence. Variations in the coding region mainly occurred in the second exon and eight materials showed a 10-bp deletion at 1710–1719 bp, including wild (O. nivara) and cultivated rice, such as IRW501 and Yuetai B. S 5 n sequences were not biased and evolved neutrally. The 48 materials could be divided into 4 categories using a phylogenetic tree of the amino acid sequences. Most of the wild rice clustered together, and the cultivated rice clustered into another group. Eight cultivated rice and O. nivara (wild rice) clustered in another group, which were found to lack 10 consecutive bases in exon 2. Eight rice varieties with high numbers of differences in their S 5 n coding regions were crossed with testers (typically indica and japonica) to produced test cross F 1 populations. The F 1 s were examined for their ability to overcome indica-japonica hybrid sterility. The result showed that the embryo sac fertility of S 5 n -containing hybrids increased significantly compared with control hybrids, but there were no differences among the materials with divergent sequences, indirectly proving that S 5 n is a non-functional gene.