期刊文献+
共找到19,968篇文章
< 1 2 250 >
每页显示 20 50 100
Effects of B segregation on Mo-rich phase precipitation in S31254 super-austenitic stainless steels:Experimental and first-principles study
1
作者 Pan-Pan Xu Jin-Yao Ma +5 位作者 Zhou-Hua Jiang Yi Zhang Chao-Xiong Liang Nan Dong Pei-De Han 《Chinese Physics B》 SCIE EI CAS CSCD 2022年第11期445-454,共10页
Precipitation in super-austenitic stainless steels will significantly affect their corrosion resistance and hot workability.The effects of Cr and Mo on precipitation behaviors were mainly achieved by affecting the dri... Precipitation in super-austenitic stainless steels will significantly affect their corrosion resistance and hot workability.The effects of Cr and Mo on precipitation behaviors were mainly achieved by affecting the driving force for precipitation,especially Mo has a more substantial promotion effect on the formation of theσphase than Cr.In the present study,B addition to the S31254 super-austenitic stainless steels shows an excellent ability to inhibit precipitation.The effect of B on the precipitation behaviors was investigated by microstructure characterization and theoretical calculations.The experimental observation shows that the small addition of B inhibits the formation of theσphase along grain boundaries and changes from continuous to intermittent distribution.Moreover,the inhibitory effect increased obviously with the increase of B content.The influence of B addition was theoretically analyzed from the atomic level,and the calculation results demonstrate that B can inhibit the formation ofσphase precipitates by suppressing Mo migration to grain boundaries.It is found that B and Mo are inclined to segregate atΣ5 andΣ9 grain boundaries,with B showing the most severe grain boundary segregation tendency.While B distribution at the grain boundary before precipitation begins,the segregation of Mo and Cr will be restrained.Additionally,B’s occupation will induce a high potential barrier,making it difficult for Mo to diffuse towards grain boundaries. 展开更多
关键词 super-austenitic stainless steel PRECIPITATE SEGREGATION BORON
下载PDF
Static recrystallization behaviors and mechanisms of 7Mo super-austenitic stainless steel with undissolved sigma precipitates during double-stage hot deformation
2
作者 Shi-guang Xu Jin-shan He +2 位作者 Run-ze Zhang Fu-cheng Zhang Xi-tao Wang 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2024年第2期475-487,共13页
Static recrystallization(SRX)behaviors and corresponding recrystallization mechanisms of 7Mo super-austenitic stainless steel were studied under different deformation conditions.The order of influence of deformation p... Static recrystallization(SRX)behaviors and corresponding recrystallization mechanisms of 7Mo super-austenitic stainless steel were studied under different deformation conditions.The order of influence of deformation parameters on static recrystallization behaviors,from high to low,is followed by temperature,first-stage strain and strain rate.Meanwhile,the effect of holding time on static recrystallization behaviors is significantly controlled by temperature.In addition,with the increase in temperature from 1000 to 1200°C,the static recrystallization mechanism evolves from discontinuous static recrystallization and continuous static recrystallization(cSRX)to metadynamic recrystallization and cSRX,and finally to cSRX.The cSRX exists at all temperatures.This is because high stacking fault energy(56 mJ m−2)promotes the movement of dislocations,making the deformation mechanism of this steel is dominated by planar slip of dislocation.Large undissolved sigma precipitates promote static recrystallization through particle-stimulated nucleation.However,small strain-induced precipitates at grain boundaries hinder the nucleation of conventional SRX and the growth of recrystallized grains,while the hindering effect decreases with the increase in temperature. 展开更多
关键词 7Mo super-austenitic stainless steel Double-stage hot deformation Conventional static recrystallization Metadynamic recrystallization Strain-induced precipitation
原文传递
Microstructure Evolution and Strain-Dependent Constitutive Modeling to Predict the Flow Behavior of 20Cr–24Ni–6Mo Super-Austenitic Stainless Steel During Hot Deformation 被引量:1
3
作者 Yan-Sen Hao Wan-Chun Liu Zhen-Yu Liu 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2018年第4期401-414,共14页
Hot compression tests were carried out with specimens of 20Cr-24Ni-6Mo super-austenitic stainless steel at strain rate from 0.01 to 10 s^-1 in the temperature range from 950 to 1150 ℃,and flow behavior was analyzed.M... Hot compression tests were carried out with specimens of 20Cr-24Ni-6Mo super-austenitic stainless steel at strain rate from 0.01 to 10 s^-1 in the temperature range from 950 to 1150 ℃,and flow behavior was analyzed.Microstructure analysis indicated that dynamic recrystallization(DRX)behavior was more sensitive to the temperature than strain rate,and full DRX was obtained when the specimen deformed at 1150℃.When the temperature reduced to 1050 ℃,full DRX was completed at the highest strain rate 10 s-l rather than at the lowest strain rate 0.01 s-1 because the adiabatic heating was pronounced at higher strain rate.In addition,flow behavior reflected in flow curves was inconsistent with the actual microstructural evolution during hot deformation,especially at higher strain rates and lower temperatures.Therefore,flow curves were revised in consideration of the effects of adiabatic heating and friction during hot deformation.The results showed that adiabatic heating became greater with the increase of strain level,strain rate and the decrease of temperature,while the frictional effect cannot be neglected at high strain level.Moreover,based on the revised flow curves,strain-dependent constitutive modeling was developed and verified by comparing the predicted data with the experimental data and the modified data.The result suggested that the developed constitutive modeling can more adequately predict the flow behavior reflected by corrected flow curves than that reflected by experimental flow curves,even though some difference existed at 950℃ and 0.01 s^-1.The main reason was that plenty of precipitates generated at this deformation condition and affected the DRX behavior and deformation behavior,eventually resulted in dramatic increase of deformation resistance. 展开更多
关键词 super-austenitic stainless steel Hot compression Adiabatic heating Constitutive modeling Microstructure evolution
原文传递
Unveiling the mechanism of yttrium significantly improving high-temperature oxidation resistance of super-austenitic stainless steel S32654 被引量:1
4
作者 Shucai Zhang Huabing Li +4 位作者 Zhouhua Jiang Hao Feng Zhejian Wen Junyu Ren Peide Han 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2022年第20期103-114,共12页
Aiming at serious catastrophic oxidation problem of super-austenitic stainless steel S32654,the influence of different rare earth elements on its oxidation behavior was comparatively investigated at 1200℃.The mechani... Aiming at serious catastrophic oxidation problem of super-austenitic stainless steel S32654,the influence of different rare earth elements on its oxidation behavior was comparatively investigated at 1200℃.The mechanism of Y significantly improving high-temperature oxidation resistance of S32654 was unveiled.The results demonstrated that Y played much better beneficial roles than Ce and La in the initial formation of oxide layer:(1)Y promoted Cr segregation to steel surface to combine with O;(2)its preferential oxidation provided nucleation cores for Cr_(2)O_(3).Both roles jointly promoted the selective oxidation of Cr and then the formation of protective Cr-rich oxide layer.This provided good prerequisites for inhibiting the formation and volatilization of MoO_(3).Additionally,Y cation segregation to oxide grain boundaries further promoted the selective oxidation of Cr and Si to form more protective oxide layer.These beneficial roles of Y essentially eliminated the synergistic effects of MoO_(3) volatilization and lamellar Cr_(2)N precipitation on catastrophic oxidation.Accordingly,the oxidation resistance of Y-bearing S32654 was improved by 22%–45%. 展开更多
关键词 super-austenitic stainless steel Rare earth elements YTTRIUM Oxidation MoO_(3)volatilization Cr_(2)N precipitation
原文传递
Effects of iron oxide on crystallization behavior and spatial distribution of spinel in stainless steel slag
5
作者 Zihang Yan Qing Zhao +3 位作者 Chengzhi Han Xiaohui Mei Chengjun Liu Maofa Jiang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第2期292-300,共9页
Chromium plays a vital role in stainless steel due to its ability to improve the corrosion resistance of the latter.However,the re-lease of chromium from stainless steel slag(SSS)during SSS stockpiling causes detrimen... Chromium plays a vital role in stainless steel due to its ability to improve the corrosion resistance of the latter.However,the re-lease of chromium from stainless steel slag(SSS)during SSS stockpiling causes detrimental environmental issues.To prevent chromium pollution,the effects of iron oxide on crystallization behavior and spatial distribution of spinel were investigated in this work.The results revealed that FeO was more conducive to the growth of spinels compared with Fe2O3 and Fe3O4.Spinels were found to be mainly distrib-uted at the top and bottom of slag.The amount of spinel phase at the bottom decreased with the increasing FeO content,while that at the top increased.The average particle size of spinel in the slag with 18wt%FeO content was 12.8μm.Meanwhile,no notable structural changes were observed with a further increase in FeO content.In other words,the spatial distribution of spinel changed when the content of iron oxide varied in the range of 8wt%to 18wt%.Finally,less spinel was found at the bottom of slag with a FeO content of 23wt%. 展开更多
关键词 stainless steel slag SPINEL CHROMIUM waste remediation ferrous oxide
下载PDF
Lap-Shear Performance of Weld-Bonded Mg Alloy and Austenitic Stainless Steel in Three-Sheet Stack-Up
6
作者 Sunusi Marwana Manladan Mukhtar Fatihu Hamza +1 位作者 Singh Ramesh Zhen Luo 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第4期342-353,共12页
With the growing interest in utilizing Mg and austenitic stainless steel(ASS)in the automotive sector,joining them together in three-sheet configuration is inevitable.However,achieving this task presents considerable ... With the growing interest in utilizing Mg and austenitic stainless steel(ASS)in the automotive sector,joining them together in three-sheet configuration is inevitable.However,achieving this task presents considerable challenges due to the large differences in their physical,metallurgical and mechanical properties.To overcome these challenges,the feasibility of using weld-bonding to join Mg alloy/ASS/ASS was investigated.The nugget formation,interface characteristics,microstructure and mechanical properties of the joints were investigated.The results show that the connection between the Mg alloy and upper ASS was achieved through the combined effect of the cured adhesive and weld-brazing in the weld zone.On the other hand,a metallurgical bond was formed at the ASS/ASS interface.The Mg nugget microstructure exhibited fine columar grains composed predominantly of primaryα-Mg grains along with a eutectic mixture ofα-Mg andβ-Mg17Al12.The nugget formed at the ASS/ASS interface consisted largely of columnar grains of austenite,with some equiaxed dendritic grains formed at the centerline of the joint.The weld-bonded joints exhibited an average peak load and energy absorption of about 8.5 kN and 17 J,respectively(the conventional RSW joints failed with minimal or no load application).The failure mode of the joints changed with increasing welding current from interfacial failure via the Mg nugget/upper ASS interface to partial interfacial failure(part of the Mg nugget was pulled out of the Mg sheet).Both failure modes were accompanied by cohesive failure in the adhesive zone. 展开更多
关键词 Weld-bonding Resistance spot welding Austenitic stainless steel Mg alloy Failure mode
下载PDF
Interplay between temperature-dependent strengthening mechanisms and mechanical stability in high-performance austenitic stainless steels
7
作者 Mohammad Javad Sohrabi Hamed Mirzadeh +3 位作者 Saeed Sadeghpour Milad Zolfipour Aghdam Abdol Reza Geranmayeh Reza Mahmudi 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第10期2182-2188,共7页
The effects of deformation temperature on the transformation-induced plasticity(TRIP)-aided 304L,twinning-induced plasti-city(TWIP)-assisted 316L,and highly alloyed stable 904L austenitic stainless steels were compare... The effects of deformation temperature on the transformation-induced plasticity(TRIP)-aided 304L,twinning-induced plasti-city(TWIP)-assisted 316L,and highly alloyed stable 904L austenitic stainless steels were compared for the first time to tune the mechan-ical properties,strengthening mechanisms,and strength-ductility synergy.For this purpose,the scanning electron microscopy(SEM),electron backscattered diffraction(EBSD),X-ray diffraction(XRD),tensile testing,work-hardening analysis,and thermodynamics calcu-lations were used.The induced plasticity effects led to a high temperature-dependency of work-hardening behavior in the 304L and 316L stainless steels.As the deformation temperature increased,the metastable 304L stainless steel showed the sequence of TRIP,TWIP,and weakening of the induced plasticity mechanism;while the disappearance of the TWIP effect in the 316L stainless steel was also observed.However,the solid-solution strengthening in the 904L superaustenitic stainless steel maintained the tensile properties over a wide temper-ature range,surpassing the performance of 304L and 316L stainless steels.In this regard,the dependency of the total elongation on the de-formation temperature was less pronounced for the 904L alloy due to the absence of additional plasticity mechanisms.These results re-vealed the importance of solid-solution strengthening and the associated high friction stress for superior mechanical behavior over a wide temperature range. 展开更多
关键词 austenitic stainless steels mechanical behavior stacking fault energy METASTABILITY mechanical twinning
下载PDF
Microstructure and mechanical properties of a cast TRIP-assisted multiphase stainless steel
8
作者 Meng-xin Wang Zi-xiang Wu +1 位作者 Jing-yu He Xiang Chen 《China Foundry》 SCIE EI CAS CSCD 2024年第3期221-228,共8页
Stainless steels are used in a wide range of complex environments due to their excellent corrosion resistance.Multiphase stainless steels can offer an excellent combination of strength,toughness and corrosion resistan... Stainless steels are used in a wide range of complex environments due to their excellent corrosion resistance.Multiphase stainless steels can offer an excellent combination of strength,toughness and corrosion resistance due to the coexistence of different microstructures.The microstructure and mechanical properties of a novel cast multiphase stainless steel,composed of martensite,ferrite,and austenite,were investigated following appropriate heat treatment processes:solution treatment at 1,050℃ for 0.5 h followed by water quenching to room temperature,and aging treatment at 500℃ for 4 h followed by water quenching to room temperature.Results show reversed austenite is formed by diffusion of Ni element during aging process,and the enrichment of Ni atoms directly determines the mechanical stability of austenite.The austenite with a lower Ni content undergoes a martensitic transformation during plastic deformation.The tensile strength of the specimen exceeds 1,100 MPa and the elongation exceeds 24%after solid solution,and further increases to 1,247 MPa and 25%after aging treatment.This enhancement is due to the TRIP effect of austenite and the precipitation of the nanoscale G-phase pinning dislocations in ferrite and martensite. 展开更多
关键词 multiphase stainless steel mechanical properties TRIP effect reversed austenite G-phase
下载PDF
Temperature-jump tensile tests to induce optimized TRIP/TWIP effect in a metastable austenitic stainless steel
9
作者 Mohammad Javad Sohrabi Hamed Mirzadeh +2 位作者 Saeed Sadeghpour Abdol Reza Geranmayeh Reza Mahmudi 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第9期2025-2036,共12页
In the present work,plastic deformation mechanisms were initially tailored by adjusting the deformation temperature in the range of 0 to 200℃ in AISI 304L austenitic stainless steel,aiming to optimize the strength-du... In the present work,plastic deformation mechanisms were initially tailored by adjusting the deformation temperature in the range of 0 to 200℃ in AISI 304L austenitic stainless steel,aiming to optimize the strength-ductility synergy.It was shown that the combined twinning-induced plasticity(TWIP)/transformation-induced plasticity(TRIP)effects and a wider strain range for the TRIP effect up to higher strains by adjusting the deformation temperature are good strategies to improve the strength-ductility synergy of this metastable stainless steel.In this regard,by consideration of the observed temperature-dependency of plastic deformation,the controlled sequence of TWIP and TRIP effects for archiving superior strength-ductility trade-off was intended by the pre-designed temperature jump tensile tests.Accordingly,the optimum tensile toughness of 846 MJ/m^(3) and total elongation to 133% were obtained by this strategy via exploiting the advantages of the TWIP effect at 100℃ and the TRIP effect at 25℃ at the later stages of the straining.Consequently,a deformation-temperature-transformation(DTT)diagram was developed for this metastable alloy.Moreover,based on work-hardening analysis,it was found that the main phenomenon constraining further improvement in the ductility and strengthening was the yielding of the deformation-induced α′-martensite. 展开更多
关键词 metastable stainless steels transformation-induced plasticity twinning-induced plasticity stacking fault energy mechanical properties
下载PDF
Bulging Distortion of Austenitic Stainless Steel Sheet on the Partially Penetrated Side of Non-Penetration Lap Laser Welding Joint
10
作者 Chengwu Yao Enze Liu +1 位作者 Jiaming Ni Binying Nie 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第1期286-295,共10页
Non-penetration laser welding of lap joints in austenitic stainless steel sheets is commonly preferred in fields where the surface quality is of utmost importance.However,the application of non-penetration welded aust... Non-penetration laser welding of lap joints in austenitic stainless steel sheets is commonly preferred in fields where the surface quality is of utmost importance.However,the application of non-penetration welded austenitic stainless steel parts is limited owing to the micro bulging distortion that occurs on the back surface of the partial penetration side.In this paper,non-penetration lap laser welding experiments,were conducted on galvanized and SUS304 austenitic stainless steel plates using a fiber laser,to investigate the mechanism of bulging distortion.A comparative experiment of DC01 galvanized steel-Q235 carbon steel lap laser welding was carried out,and the deflection and distortion profile of partially penetrated side of the sheets were measured using a noncontact laser interferometer.In addition,the cold-rolled SUS304 was subjected to heat holding at different temperatures and water quenching after bending to characterize its microstructure under tensile and compressive stress.The results show that,during the heating stage of the thermal cycle of laser lap welding,the partial penetration side of the SUS304 steel sheet generates compressive stress,which extrudes the material in the heat-affected zone to the outside of the back of the SUS304 steel sheet,thereby forming a bulge.The findings of these experiments can be of great value for controlling the distortion of the partial penetrated side of austenitic stainless steel sheet during laser non-penetration lap welding. 展开更多
关键词 Non-penetration lap laser welding Bulging distortion Austenitic stainless steel Compressive stress Tension stress
下载PDF
Unveiling the cellular microstructure-property relations in martensitic stainless steel via laser powder bed fusion
11
作者 Lingzhi Wu Cong Zhang +7 位作者 Dil Faraz Khan Ruijie Zhang Yongwei Wang Xue Jiang Haiqing Yin Xuanhui Qu Geng Liu Jie Su 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第11期2476-2487,共12页
Laser powder bed fusion(LPBF)is a widely recognized additive manufacturing technology that can fabricate complex components rapidly through layer-by-layer formation.However,there is a paucity of research on the effect... Laser powder bed fusion(LPBF)is a widely recognized additive manufacturing technology that can fabricate complex components rapidly through layer-by-layer formation.However,there is a paucity of research on the effect of laser scanning speed on the cellular microstructure and mechanical properties of martensitic stainless steel.This study systematically investigated the influence of laser scanning speed on the cellular microstructure and mechanical properties of a developed Fe11Cr8Ni5Co3Mo martensitic stainless steel produced by LPBF.The results show that increasing the laser scanning speed from 400 to 1000 mm/s does not lead to a noticeable change in the phase fraction,but it reduces the average size of the cellular microstructure from 0.60 to 0.35μm.The scanning speeds of 400 and 1000 mm/s both had adverse effects on performances of sample,resulting in inadequate fusion and keyhole defects respectively.The optimal scanning speed for fabricating samples was determined to be 800 mm/s,which obtained the highest room temperature tensile strength and elongation,with the ultimate tensile strength measured at(1088.3±2.0)MPa and the elongation of(16.76±0.10)%.Furthermore,the mechanism of the evolution of surface morphology,defects,and energy input were clarified,and the relationship between cellular microstructure size and mechanical properties was also established. 展开更多
关键词 laser powder bed fusion martensitic stainless steel cellular microstructure mechanical properties strengthening mechanism
下载PDF
Prediction of Hot Deformation Behavior of 7Mo Super Austenitic Stainless Steel Based on Back Propagation Neural Network
12
作者 WANG Fan WANG Xitao +1 位作者 XU Shiguang HE Jinshan 《材料导报》 EI CAS CSCD 北大核心 2024年第17期165-171,共7页
The hot compression tests of 7Mo super austenitic stainless(SASS)were conducted to obtain flow curves at the temperature of 1000-1200℃and strain rate of 0.001 s^(-1)to 1 s^(-1).To predict the non-linear hot deformati... The hot compression tests of 7Mo super austenitic stainless(SASS)were conducted to obtain flow curves at the temperature of 1000-1200℃and strain rate of 0.001 s^(-1)to 1 s^(-1).To predict the non-linear hot deformation behaviors of the steel,back propagation-artificial neural network(BP-ANN)with 16×8×8 hidden layer neurons was proposed.The predictability of the ANN model is evaluated according to the distribution of mean absolute error(MAE)and relative error.The relative error of 85%data for the BP-ANN model is among±5%while only 42.5%data predicted by the Arrhenius constitutive equation is in this range.Especially,at high strain rate and low temperature,the MAE of the ANN model is 2.49%,which has decreases for 18.78%,compared with conventional Arrhenius constitutive equation. 展开更多
关键词 7Mo super austenitic stainless steel hot deformation behavior flow stress BP-ANN Arrhenius constitutive equation
下载PDF
Robust Particle Swarm Optimization Algorithm for Modeling the Effectof Oxides Thermal Properties on AMIG 304L Stainless Steel Welds
13
作者 Rachid Djoudjou Abdeljlil Chihaoui Hedhibi +3 位作者 Kamel Touileb Abousoufiane Ouis Sahbi Boubaker Hani Said Abdo 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第11期1809-1825,共17页
There are several advantages to the MIG(Metal Inert Gas)process,which explains its increased use in variouswelding sectors,such as automotive,marine,and construction.A variant of the MIG process,where the sameequipmen... There are several advantages to the MIG(Metal Inert Gas)process,which explains its increased use in variouswelding sectors,such as automotive,marine,and construction.A variant of the MIG process,where the sameequipment is employed except for the deposition of a thin layer of flux before the welding operation,is the AMIG(Activated Metal Inert Gas)technique.This study focuses on investigating the impact of physical properties ofindividual metallic oxide fluxes for 304L stainless steel welding joint morphology and to what extent it can helpdetermine a relationship among weld depth penetration,the aspect ratio,and the input physical properties ofthe oxides.Five types of oxides,TiO_(2),SiO_(2),Fe_(2)O_(3),Cr_(2)O_(3),and Mn_(2)O_(3),are tested on butt joint design withoutpreparation of the edges.A robust algorithm based on the particle swarm optimization(PSO)technique is appliedto optimally tune the models’parameters,such as the quadratic error between the actual outputs(depth and aspectratio),and the error estimated by the models’outputs is minimized.The results showed that the proposed PSOmodel is first and foremost robust against uncertainties in measurement devices and modeling errors,and second,that it is capable of accurately representing and quantifying the weld depth penetration and the weld aspect ratioto the oxides’thermal properties. 展开更多
关键词 Activated metal inert gas welding stainless steel activating flux oxides’thermal properties particle swarm optimization
下载PDF
Progress in weldability research of duplex stainless steels
14
作者 刘爱国 《China Welding》 CAS 2024年第2期50-62,共13页
Duplex stainless steels(DSSs)show better corrosion resistance with higher strength than traditional austenite stainless steels in many aggressive environments,and can be welded properly with almost every welding proce... Duplex stainless steels(DSSs)show better corrosion resistance with higher strength than traditional austenite stainless steels in many aggressive environments,and can be welded properly with almost every welding processes,if proper heat input is provided.Progresses of research works on weldability of DSSs in recent years are reviewed in this paper.Balance control of ferrite/austenite phases is most important for DSSs welding.The phases balance can be controlled with filler materials,nitrogen addition in shielding gas,heat input,post weld heat treatment,and alternating magnetic field.Too high cooling rate results in not only extra ferrite,but also chromium nitride precipitation.While too low cooling rate or heating repeatedly results in precipitation of secondary austenite and intermetallic compounds.In both situations,mechanical properties and corrosion resistance of the DSS joints deteriorate.Recommended upper and lower limits of heat input and maximum interpass temperature should be observed. 展开更多
关键词 duplex stainless steel WELDABILITY phases balance secondary phase
下载PDF
Effect of Ni content on the weldability of middle-chromium hyperpure ferritic stainless steels 00Cr21Ti
15
作者 ZHANG Xinbao WANG Zhibin +2 位作者 SUN Mingshan YAN Zhifeng WANG Wenxian 《Baosteel Technical Research》 CAS 2024年第2期19-26,共8页
Excellent weldability substantially contributes to the intrinsic quality of steels,while appropriate chemical composition plays a primary role in the essential weldability of steels.The poor weldability of ferritic st... Excellent weldability substantially contributes to the intrinsic quality of steels,while appropriate chemical composition plays a primary role in the essential weldability of steels.The poor weldability of ferritic stainless steels could be improved through modification with minor alloy elements while minimally increasing the cost.Therefore,studying the effect of minor alloy elements on the weldability of steels is of considerable importance.In this study,several steels of middle-chromium hyperpure ferritic stainless 00Cr21Ti with different Ni content(0.3%,0.5%,0.8%,and 1.0%)were developed,and their weldabilities of butt joint samples welded using the metal inert gas welding process,including the influence of welded joints on the microstructure,tensile performance,corrosion resistance,and fatigue property,were investigated.Results show that the steels with w(Ni)≥0.8%exhibit excellent mechanical properties compared with those with low-Ni content steels,further,their impact toughness at normal atmospheric temperature meets the industrial application standard and the fatigue property is similar to that of 304 austenitic stainless steel.Moreover,results show that the corrosion resistance of all the samples is almost at the same level.The results acquired in this study are supposed to be useful for the optimization of the chemical composition of stainless steels aiming to improve weldability. 展开更多
关键词 00Cr21Ti ferritic stainless steel SUS443 welded joint mechanical properties fatigue property Ni content
下载PDF
Experimental Study on Corrosion of Stainless Steel in Low Temperature Multi effect Seawater Desalination
16
作者 Shiyi Zhang Xinggang Ma 《Frontiers of Metallurgical Industry》 2024年第2期25-31,共7页
Starting from the corrosion mechanism,this paper analyzes the characteristics of various types of stainless steel and selects the best performance composite plate composite plate stainless steel.Analyze and select the... Starting from the corrosion mechanism,this paper analyzes the characteristics of various types of stainless steel and selects the best performance composite plate composite plate stainless steel.Analyze and select the most suitable corrosion detection method based on specific practical multi working conditions,discuss the interference factors that affect metal corrosion during experimental simulation,and the advantages of newly developed sheet metal.The new development of composite board panels,with the substrate and composite materials applying their respective capabilities for MED,will bring breakthrough progress to the scientific research and engineering applica-tion of composite boards. 展开更多
关键词 seawater desalination corrosion mechanism of stainless steel composite board lamination corrosion rate
下载PDF
On microstructure characterization of Fe-Cr-Ni-Mo-N super-austenitic stainless steel during hot deformation 被引量:1
17
作者 Yan-sen Hao Jian Li +2 位作者 Wan-chun Liu Wei-na Zhang Zhen-yu Liu 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2019年第10期1080-1087,共8页
Hot compression tests of Fe-Cr-Ni-Mo-N super-austenitic stainless steel were carried out in the temperature range of 950-1150℃with a strain rate of 0.01-10 s-1,in which dynamic recrystallization(DRX)mechanisms and co... Hot compression tests of Fe-Cr-Ni-Mo-N super-austenitic stainless steel were carried out in the temperature range of 950-1150℃with a strain rate of 0.01-10 s-1,in which dynamic recrystallization(DRX)mechanisms and coincident site lattice(CSL)boundary evolution in consideration of adiabatic heating were investigated.The results show that discontinuous DRX was the main DRX mechanism.Due to the high stacking fault energy(162-173 mJ/m2),subgrain evolution occurring in dynamic recovery process was stimulated at high temperatures and high strain rates.DRX behavior was accelerated by higher strain rate and adiabatic heating.Also,amounts of fine annealing twin boundaries were observed in the specimens deformed at higher strain rates and higher temperatures.By analyzing the length fractions of∑3 boundary in overall boundaries and in CSL boundaries,the results indicate that∑3 regeneration mechanism and new twinning mechanism take effect concurrently for twin-related grain boundary when the specimens were deformed at 950℃with a strain rate of 0.01-10 s-1.With increasing strain rate or deformation temperature,the propagation of∑3 boundaries was mainly dominated by new twinning mechanism. 展开更多
关键词 super-austenitic stainless steel Dynamic recrystallization ADIABATIC heating Coincident site lattice boundary Hot deformation
原文传递
Effect of boron on dissolution and repairing behavior of passive film on S31254 super-austenitic stainless steel immersed in H_(2)SO_(4) solution 被引量:1
18
作者 Tong-hao Wang Jian Wang +3 位作者 Jin-gang Bai Shu-jing Wang Chao Chen Pei-de Han 《Journal of Iron and Steel Research International》 SCIE EI CSCD 2022年第6期1012-1025,共14页
The impact of boron on the dissolution and repairing behavior of passive films formed on S31254 super-austenitic stainless steel(SASS)was investigated.SASS was immersed in 0.5 mol/L of H_(2)SO_(4) for 0,2,6,10,and 14 ... The impact of boron on the dissolution and repairing behavior of passive films formed on S31254 super-austenitic stainless steel(SASS)was investigated.SASS was immersed in 0.5 mol/L of H_(2)SO_(4) for 0,2,6,10,and 14 days to explore the evolution of the passive film.The electrochemical impedance spectroscope(EIS),the Mott–Schottky analysis,and X-ray photoelectron spectroscope were utilized to analyze the semiconductor properties and compositions of the passive films.EIS showed a decrease and consequent increase over 14 days;the same pattern was observed for Cr_(2)O_(3) and Cr/Fe.However,the defect density of the passive film exhibited a reverse trend.The variation in film thicknesses indicated that the passive films possessed dissolution and repairing behavior.SASS passive film had a double-layer structure;the outer layer was found to be rich in Fe3+and Cr(OH)3,but low on Mo6+,while the inner layer was rich in Cr_(2)O_(3) and low in Mo4+.The addition of boron increased the corrosion resistance and could promote the efficiency of the passive film repair,likely by promoting the migration of Mox+,which promoted the repairing of the passive film. 展开更多
关键词 PASSIVE film S31254 super-austenitic stainless steel BORON DISSOLUTION Repairing
原文传递
Effect of surface damage induced by cavitation erosion on pitting and passive behaviors of 304L stainless steel 被引量:3
19
作者 Liang Li Yanxin Qiao +5 位作者 Lianmin Zhang Aili Ma Enobong Felix Daniel Rongyao Ma Jian Chen Yugui Zheng 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第7期1338-1352,共15页
The corrosion behavior of 304L stainless steel(SS)in 3.5wt%NaCl solution after different cavitation erosion(CE)times was mainly evaluated using electrochemical noise and potentiostatic polarization techniques.It was f... The corrosion behavior of 304L stainless steel(SS)in 3.5wt%NaCl solution after different cavitation erosion(CE)times was mainly evaluated using electrochemical noise and potentiostatic polarization techniques.It was found that the antagonism effect resulting in the passivation and depassivation of 304L SS had significant distinctions at different CE periods.The passive behavior was predominant during the incubation period of CE where the metastable pitting initiated at the surface of 304L SS.Over the rising period of CE,the 304L SS experienced a transition from passivation to depassivation,leading to the massive growth of metastable pitting and stable pitting.The depassivation of304L SS was found to be dominant at the stable period of CE where serious localized corrosion occurred. 展开更多
关键词 cavitation erosion PITTING stainless steel electrochemical noise
下载PDF
Achieving a high-strength dissimilar joint of T91 heat-resistant steel to 316L stainless steel via friction stir welding 被引量:2
20
作者 Zhiwei Wang Min Zhang +6 位作者 Cong Li Fenglei Niu Hao Zhang Peng Xue Dingrui Ni Bolv Xiao Zongyi Ma 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第1期166-176,共11页
The reliable welding of T91 heat-resistant steel to 316L stainless steel is a considerable issue for ensuring the safety in service of ultrasupercritical power generation unit and nuclear fusion reactor,but the high-q... The reliable welding of T91 heat-resistant steel to 316L stainless steel is a considerable issue for ensuring the safety in service of ultrasupercritical power generation unit and nuclear fusion reactor,but the high-quality dissimilar joint of these two steels was difficult to be obtained by traditional fusion welding methods.Here we improved the structure-property synergy in a dissimilar joint of T91 steel to 316L steel via friction stir welding.A defect-free joint with a large bonding interface was produced using a small-sized tool under a relatively high welding speed.The bonding interface was involved in a mixing zone with both mechanical mixing and metallurgical bonding.No obvious material softening was detected in the joint except a negligible hardness decline of only HV~10 in the heat-affected zone of the T91 steel side due to the formation of ferrite phase.The welded joint exhibited an excellent ultimate tensile strength as high as that of the 316L parent metal and a greatly enhanced yield strength on account of the dependable bonding and material renovation in the weld zone.This work recommends a promising technique for producing high-strength weldments of dissimilar nuclear steels. 展开更多
关键词 heat-resistant steel stainless steel friction stir welding dissimilar welding MICROSTRUCTURE mechanical property
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部