The present study numerically explored the aerodynamic performance of a novel railway tunnel with a partially reduced cross-section.The impact of the reduction rate of the tunnel cross-section on wave transmissions wa...The present study numerically explored the aerodynamic performance of a novel railway tunnel with a partially reduced cross-section.The impact of the reduction rate of the tunnel cross-section on wave transmissions was analyzed based on the three-dimensional,unsteady,compressible,and RNG k-εturbulence model.The results highlight that the reduction rate(S)most affects pressure configurations at the middle tunnel segment,followed by the enlarged segments near access,and finally the exit.The strength of the newly generated compression wave at the tunnel junction where the cross-section abruptly changes increases exponentially with the decrease of the cross-sectional area.The maximum peak-to-peak pressureΔP on the tunnel and train surface for non-uniform tunnels is reduced by 10.7%and 13.8%,respectively,compared with those of equivalent uniform tunnels.Overall,the economic analysis suggests that the aerodynamic performance of the developed tunnel prototype surpasses those conventional tunnels based on the same excavated volume.展开更多
Tunnels are now an integral part of the infrastructure in major cities around the world. For many reasons, these tunnels have horseshoe-shaped cross-sections with round top and flat bottom. This paper presents some im...Tunnels are now an integral part of the infrastructure in major cities around the world. For many reasons, these tunnels have horseshoe-shaped cross-sections with round top and flat bottom. This paper presents some improvements to the use of the Hyperstatic Reaction Method-HRM for analysing tunnels with horseshoe-shaped cross-sections when these tunnels operate under the influence of earthquakes, particularly in cases when the tunnel lining is a continuous lining. The analysis used parameters of a tunnel from the Hanoi metro system, as well as parameters of the strongest earthquake that may occur in the central Hanoi area in the improved HRM and 2 D numerical methods using the ABAQUS software. On the basis of the results obtained, the paper gives conclusions about the HRM methodology when it is used to calculate tunnels that have horseshoe cross-sections operating under the influence of earthquakes.展开更多
Pairing in the cuprate high-temperature superconductors and its origin remain among the most enduring mysteries in condensed matter physics. With cross-sectional scanning tunneling microscopy/spectroscopy, we clearly ...Pairing in the cuprate high-temperature superconductors and its origin remain among the most enduring mysteries in condensed matter physics. With cross-sectional scanning tunneling microscopy/spectroscopy, we clearly reveal the spatial-dependence or inhomogeneity of the superconducting gap structure of Bi2Sr2CaCu2O8+δ (Bi2212) and YBa2Cu3O7-x (YBCO) along their c-axes on a scale shorter than the interlayer spacing. By tunneling into the (100) plane of a Bi2212 single crystal and a YBCO film, we observe both U-shaped tunneling spectra with extended fiat zero-conductance bottoms, and V-shaped gap structures, in different regions of each sample. On the YBCO film, tunneling into a (110) surface only reveals a U-shaped gap without any zero-bias peak. Our analysis suggests that the U-shaped gap is likely a nodeless superconducting gap. The V-shaped gap has a very small amplitude, and is likely proximity-induced by regions having the larger U-shaped gap.展开更多
Although ultrasound measurements have been used in previous studies on carpal tunnel syndrome to visualize injury to the median nerve, whether such ultrasound data can indicate the severity of carpal tunnel syndrome r...Although ultrasound measurements have been used in previous studies on carpal tunnel syndrome to visualize injury to the median nerve, whether such ultrasound data can indicate the severity of carpal tunnel syndrome remains controversial. The cross-sectional areas of the median nerve at the tunnel inlet and outlet can show swelling and compression of the nerve at the carpal. We hypothesized that the ratio of the cross-sectional areas of the median nerve at the carpal tunnel inlet to outlet accurately reflects the severity of carpal tunnel syndrome. To test this, high-resolution ultrasound with a linear array transducer at 5–17 MHz was used to assess 77 patients with carpal tunnel syndrome. The results showed that the cut-off point for the inlet-to-outlet ratio was 1.14. Significant differences in the inlet-to-outlet ratio were found among patients with mild, moderate, and severe carpal tunnel syndrome. The cut-off point in the ratio of cross-sectional areas of the median nerve was 1.29 between mild and more severe(moderate and severe) carpal tunnel syndrome patients with 64.7% sensitivity and 72.7% specificity. The cut-off point in the ratio of cross-sectional areas of the median nerve was 1.52 between the moderate and severe carpal tunnel syndrome patients with 80.0% sensitivity and 64.7% specificity. These results suggest that the inlet-to-outlet ratio reflected the severity of carpal tunnel syndrome.展开更多
Purpose-This study aims to research the large cross-section tunnel stability evaluation method corrected after considering the thickness-span ratio.Design/methodology/approach-First,taking the Liuyuan Tunnel of Huangg...Purpose-This study aims to research the large cross-section tunnel stability evaluation method corrected after considering the thickness-span ratio.Design/methodology/approach-First,taking the Liuyuan Tunnel of Huanggang-Huangmei High-Speed Railway as an example and taking deflection of the third principal stress of the surrounding rock at a vault after tunnel excavation as the criterion,the critical buried depth of the large section tunnel was determined.Then,the strength reduction method was employed to calculate the tunnel safety factor under different rock classes and thickness-span ratios,and mathematical statistics was conducted to identify the relationships of the tunnel safety factor with the thickness-span ratio and the basic quality(BQ)index of the rock for different rock classes.Finally,the influences of thickness-span ratio,groundwater,initial stress of rock and structural attitude factors were considered to obtain the corrected BQ,based on which the stability of a large cross-section tunnel with a depth of more than 100 m during mechanized operation was analyzed.This evaluation method was then applied to Liuyuan Tunnel and Cimushan No.2 Tunnel of Chongqing Urban Expressway for verification.Findings-This study shows that under different rock classes,the tunnel safety factor is a strict power function of the thickness-span ratio,while a linear function of the BQ to some extent.It is more suitable to use the corrected BQ as a quantitative index to evaluate tunnel stability according to the actual conditions of the site.Originality/value-The existing industry standards do not consider the influence of buried depth and span in the evaluation of tunnel stability.The stability evaluation method of large section tunnel considering the correction of overburden span ratio proposed in this paper achieves higher accuracy for the stability evaluation of surrounding rock in a full or large-section mechanized excavation of double line high-speed railway tunnels.展开更多
Carpal tunnel syndrome(CTS) is a common peripheral entrapment neuropathy of the median nerve at wrist level, and is thought to be caused by compression of the median nerve in the carpal tunnel. There is no standard qu...Carpal tunnel syndrome(CTS) is a common peripheral entrapment neuropathy of the median nerve at wrist level, and is thought to be caused by compression of the median nerve in the carpal tunnel. There is no standard quantitative reference for the diagnosis of CTS. Greyscale sonography and sonoelastography(SEL) have been used as diagnostic tools. The most commonly agreed findings in grey-scale sonography for the diagnosis of CTS is enlargement of the median nerve cross-sectional area(CSA). Several authors have assessed additional parameters. "Delta CSA" is the difference between the proximal median nerve CSA at the pronator quadratus and the maximal CSA within the carpal tunnel. The "CSA ratio" is the ratio of CSA in the carpal tunnel to the CSA at the mid forearm. These additional parameters showed better diagnostic accuracy than CSA measurement alone. Recently, a number of studies have investigated the elasticity of the median nerve using SEL, and have shown that this also has diagnostic value, as it was significantly stiffer in CTS patients compared to healthy volunteers. In this review, we summarize the usefulness of grey-scale sonography and SEL in diagnosing CTS.展开更多
As in the building of deep buried long tunnels,there are complicated conditions such as great deformation,high stress,multi-variables,high non-linearity and so on,the algorithm for structure optimization and its appli...As in the building of deep buried long tunnels,there are complicated conditions such as great deformation,high stress,multi-variables,high non-linearity and so on,the algorithm for structure optimization and its application in tunnel engineering are still in the starting stage. Along with the rapid development of highways across the country,it has become a very urgent task to be tackled to carry out the optimization design of the structure of the section of the tunnel to lessen excavation workload and to reinforce the support. Artificial intelligence demonstrates an extremely strong capability of identifying,expressing and disposing such kind of multiple variables and complicated non-linear relations. In this paper,a comprehensive consideration of the strategy of the selection and updating of the concentration and adaptability of the immune algorithm is made to replace the selection mode in the original genetic algorithm which depends simply on the adaptability value. Such an algorithm has the advantages of both the immune algorithm and the genetic algorithm,thus serving the purpose of not only enhancing the individual adaptability but maintaining the individual diversity as well. By use of the identifying function of the antigen memory,the global search capability of the immune genetic algorithm is raised,thereby avoiding the occurrence of the premature phenomenon. By optimizing the structure of the section of the Huayuan tunnel,the current excavation area and support design are adjusted. A conclusion with applicable value is arrived at. At a higher computational speed and a higher efficiency,the current method is verified to have advantages in the optimization computation of the tunnel project. This also suggests that the application of the immune genetic algorithm has a practical significance to the stability assessment and informationization design of the wall rock of the tunnel.展开更多
Mountain tunnels in cold regions are vulnerable to adverse effects of freezing action.Thus,it is necessary to identify the lining responses of shallow mountain tunnels subjected to freezing action.To quantify the infl...Mountain tunnels in cold regions are vulnerable to adverse effects of freezing action.Thus,it is necessary to identify the lining responses of shallow mountain tunnels subjected to freezing action.To quantify the influence of freezing action and key design parameters(such as cross-sectional shape;lining thickness;and waterproof measures)on the lining response,a thermal-hydro-mechanical coupled finite element(FE)model is established and verified.Then,specific consideration is given to the lining internal force and resulting axial stresses.And the influences of the cross-sectional shape,concrete parameters,and waterproof measures on the lining responses are investigated.Generally,the rectangular tunnel has the worst security;the circular tunnel is the safest.On the other hand,when the thermal conductivity is less than 2.2[W/(m·K)],a greater thermal conductivity will cause a greater risk of damage to the lining.Moreover,the drainage plate can reduce the value of minimum axial stresses,whether frozen or not,even eliminating the tensiondamaged area.Overall,this study helps to estimate the lining responses and prevent frost damages for shallow mountain tunnels during freezing period.展开更多
The use of explosives is restricted on some important holidays,and the handling of unexploded charge is very dangerous.Therefore,an innovative non-explosive technology called instantaneous expansion(IE)was developed f...The use of explosives is restricted on some important holidays,and the handling of unexploded charge is very dangerous.Therefore,an innovative non-explosive technology called instantaneous expansion(IE)was developed for tunneling.IE,whose components are derived from solid wastes such as coal gangue and straw conduces to realizing the reuse of waste.Moreover,its cost is lower than explosives.Blind guns of IE are easy to treat with water.The IE tunneling method is classified into two categories,i.e.IE with a single fracture(IESF)and IE with multiple fractures(IEMF),which are used to form the tunnel crosssection directionally cross-section and to fragment the rocks inside the cross-section,respectively.In this study,the principle of IE tunneling was elaborated first.Then,tunneling experiments and numerical simulations were performed on IE,conventional blasting(CB)and shaped charge blasting(SCB)in comparison.The experimental and numerical results show that IE achieved the best performance of directional rock breaking and corresponded to the most minor excavation-induced damage zone of the surrounding rock.Besides,the tunnel cross-section created by IE was flat and smooth.Comparing IE with CB and SCB,the over/under-excavation area decreased by 64%and 17%,and the excavation-induced damage zone fell by 26%and 11%,respectively.The range of the loose circle is reduced,which is conducive to improving the long-term stability of the roadway.The research provides a safe and economical tunneling method with excellent application prospects.展开更多
To study the mechanical responses of large cross-section tunnel reinforced by pretensioned rock bolts and anchor cables, an analytical model is proposed. Considering the interaction between rock mass and bolt-cable su...To study the mechanical responses of large cross-section tunnel reinforced by pretensioned rock bolts and anchor cables, an analytical model is proposed. Considering the interaction between rock mass and bolt-cable support, the strain softening characteristic of rock mass, the elastic-plastic characteristic of bolt-cable support, and the delay effect of installation are considered in the model. To solve the different mechanical cases of tunneling reinforced by bolt-cable support, an analytical approach has been put forward to get the solutions of stress and displacement associated with tunneling. The proposed analytical model is verified by numerical simulation. Moreover, parametric analysis is performed to study the effects of pretension force,cross-section area, length, and supporting density of bolt-cable support on tunnel reinforcement, which can provide references for determining these parameters in tunnel design. Based on the analytical model, a new Ground Response Curve(GRC)considering the reinforcement of bolt-cable support is obtained, which shows the pretension forces and the timely installation are important in bolt-cable support. In addition, the proposed model is applied to the analysis of the Great Wall Station Tunnel, a high-speed railway tunnel with a super large cross-section, which shows that the analytical model of bolt-cable support was a useful tool for preliminary design of large cross-section tunnel.展开更多
In recent years, the use of terrestrial laser scanning (TLS) technique in engineering surveys is gaining an increasing interest due to the advantages of non-contact, rapidity, high accuracy, and large scale. Million...In recent years, the use of terrestrial laser scanning (TLS) technique in engineering surveys is gaining an increasing interest due to the advantages of non-contact, rapidity, high accuracy, and large scale. Millions of accurate 3D points (mm level accuracy) can be delivered by this technique with a high point density in a short time (up to 1 million points per second), which makes it a poten- tial technique for large scale applications in engineering environments such as tunnels, bridges, and heritage buildings. Tunnels, in particular those with long lengths, create great challenges for surveyors to obtain the satisfactory scanned data. This paper presents a short history of TLS techniques used for tunnels. A general overview of TLS techniques is given, followed by a review of several applications of TLS for tunnels. These applications are classified as: detecting geological features of drilling tun- nels, monitoring the geometry of tunnels during excavation, making deformation measurements, and extracting features. The review emphasizes how TLS techniques can be used to measure various aspects of tunnels. It is clear that TLS techniques are not yet a common tool for tunnel investigations, but there is still a huge potential to excavate.展开更多
基金Project(51975591)supported by the National Natural Science Foundation of China。
文摘The present study numerically explored the aerodynamic performance of a novel railway tunnel with a partially reduced cross-section.The impact of the reduction rate of the tunnel cross-section on wave transmissions was analyzed based on the three-dimensional,unsteady,compressible,and RNG k-εturbulence model.The results highlight that the reduction rate(S)most affects pressure configurations at the middle tunnel segment,followed by the enlarged segments near access,and finally the exit.The strength of the newly generated compression wave at the tunnel junction where the cross-section abruptly changes increases exponentially with the decrease of the cross-sectional area.The maximum peak-to-peak pressureΔP on the tunnel and train surface for non-uniform tunnels is reduced by 10.7%and 13.8%,respectively,compared with those of equivalent uniform tunnels.Overall,the economic analysis suggests that the aerodynamic performance of the developed tunnel prototype surpasses those conventional tunnels based on the same excavated volume.
基金supported by the Saint Petersburg Mining University
文摘Tunnels are now an integral part of the infrastructure in major cities around the world. For many reasons, these tunnels have horseshoe-shaped cross-sections with round top and flat bottom. This paper presents some improvements to the use of the Hyperstatic Reaction Method-HRM for analysing tunnels with horseshoe-shaped cross-sections when these tunnels operate under the influence of earthquakes, particularly in cases when the tunnel lining is a continuous lining. The analysis used parameters of a tunnel from the Hanoi metro system, as well as parameters of the strongest earthquake that may occur in the central Hanoi area in the improved HRM and 2 D numerical methods using the ABAQUS software. On the basis of the results obtained, the paper gives conclusions about the HRM methodology when it is used to calculate tunnels that have horseshoe cross-sections operating under the influence of earthquakes.
基金Supported by the National Natural Science Foundation of Chinathe National Key Research and Development Program of China under Grant No 2016YFA0300203
文摘Pairing in the cuprate high-temperature superconductors and its origin remain among the most enduring mysteries in condensed matter physics. With cross-sectional scanning tunneling microscopy/spectroscopy, we clearly reveal the spatial-dependence or inhomogeneity of the superconducting gap structure of Bi2Sr2CaCu2O8+δ (Bi2212) and YBa2Cu3O7-x (YBCO) along their c-axes on a scale shorter than the interlayer spacing. By tunneling into the (100) plane of a Bi2212 single crystal and a YBCO film, we observe both U-shaped tunneling spectra with extended fiat zero-conductance bottoms, and V-shaped gap structures, in different regions of each sample. On the YBCO film, tunneling into a (110) surface only reveals a U-shaped gap without any zero-bias peak. Our analysis suggests that the U-shaped gap is likely a nodeless superconducting gap. The V-shaped gap has a very small amplitude, and is likely proximity-induced by regions having the larger U-shaped gap.
基金supported by a grant from the Shanghai Key Laboratory of Peripheral Nerve and Microsurgery in China,No.14DZ2273300the Natural Science Foundation of Shanghai in China,No.13ZR1404600a grant from the National Key Basic Research Program of China(973 Program),No.2014CB542201
文摘Although ultrasound measurements have been used in previous studies on carpal tunnel syndrome to visualize injury to the median nerve, whether such ultrasound data can indicate the severity of carpal tunnel syndrome remains controversial. The cross-sectional areas of the median nerve at the tunnel inlet and outlet can show swelling and compression of the nerve at the carpal. We hypothesized that the ratio of the cross-sectional areas of the median nerve at the carpal tunnel inlet to outlet accurately reflects the severity of carpal tunnel syndrome. To test this, high-resolution ultrasound with a linear array transducer at 5–17 MHz was used to assess 77 patients with carpal tunnel syndrome. The results showed that the cut-off point for the inlet-to-outlet ratio was 1.14. Significant differences in the inlet-to-outlet ratio were found among patients with mild, moderate, and severe carpal tunnel syndrome. The cut-off point in the ratio of cross-sectional areas of the median nerve was 1.29 between mild and more severe(moderate and severe) carpal tunnel syndrome patients with 64.7% sensitivity and 72.7% specificity. The cut-off point in the ratio of cross-sectional areas of the median nerve was 1.52 between the moderate and severe carpal tunnel syndrome patients with 80.0% sensitivity and 64.7% specificity. These results suggest that the inlet-to-outlet ratio reflected the severity of carpal tunnel syndrome.
基金supported by the NSFC HSR Fundamental Research Joint Fund (Grant No.U1934213)。
文摘Purpose-This study aims to research the large cross-section tunnel stability evaluation method corrected after considering the thickness-span ratio.Design/methodology/approach-First,taking the Liuyuan Tunnel of Huanggang-Huangmei High-Speed Railway as an example and taking deflection of the third principal stress of the surrounding rock at a vault after tunnel excavation as the criterion,the critical buried depth of the large section tunnel was determined.Then,the strength reduction method was employed to calculate the tunnel safety factor under different rock classes and thickness-span ratios,and mathematical statistics was conducted to identify the relationships of the tunnel safety factor with the thickness-span ratio and the basic quality(BQ)index of the rock for different rock classes.Finally,the influences of thickness-span ratio,groundwater,initial stress of rock and structural attitude factors were considered to obtain the corrected BQ,based on which the stability of a large cross-section tunnel with a depth of more than 100 m during mechanized operation was analyzed.This evaluation method was then applied to Liuyuan Tunnel and Cimushan No.2 Tunnel of Chongqing Urban Expressway for verification.Findings-This study shows that under different rock classes,the tunnel safety factor is a strict power function of the thickness-span ratio,while a linear function of the BQ to some extent.It is more suitable to use the corrected BQ as a quantitative index to evaluate tunnel stability according to the actual conditions of the site.Originality/value-The existing industry standards do not consider the influence of buried depth and span in the evaluation of tunnel stability.The stability evaluation method of large section tunnel considering the correction of overburden span ratio proposed in this paper achieves higher accuracy for the stability evaluation of surrounding rock in a full or large-section mechanized excavation of double line high-speed railway tunnels.
文摘Carpal tunnel syndrome(CTS) is a common peripheral entrapment neuropathy of the median nerve at wrist level, and is thought to be caused by compression of the median nerve in the carpal tunnel. There is no standard quantitative reference for the diagnosis of CTS. Greyscale sonography and sonoelastography(SEL) have been used as diagnostic tools. The most commonly agreed findings in grey-scale sonography for the diagnosis of CTS is enlargement of the median nerve cross-sectional area(CSA). Several authors have assessed additional parameters. "Delta CSA" is the difference between the proximal median nerve CSA at the pronator quadratus and the maximal CSA within the carpal tunnel. The "CSA ratio" is the ratio of CSA in the carpal tunnel to the CSA at the mid forearm. These additional parameters showed better diagnostic accuracy than CSA measurement alone. Recently, a number of studies have investigated the elasticity of the median nerve using SEL, and have shown that this also has diagnostic value, as it was significantly stiffer in CTS patients compared to healthy volunteers. In this review, we summarize the usefulness of grey-scale sonography and SEL in diagnosing CTS.
基金supported by the National Natural Science Foundation of China (No.50808090)
文摘As in the building of deep buried long tunnels,there are complicated conditions such as great deformation,high stress,multi-variables,high non-linearity and so on,the algorithm for structure optimization and its application in tunnel engineering are still in the starting stage. Along with the rapid development of highways across the country,it has become a very urgent task to be tackled to carry out the optimization design of the structure of the section of the tunnel to lessen excavation workload and to reinforce the support. Artificial intelligence demonstrates an extremely strong capability of identifying,expressing and disposing such kind of multiple variables and complicated non-linear relations. In this paper,a comprehensive consideration of the strategy of the selection and updating of the concentration and adaptability of the immune algorithm is made to replace the selection mode in the original genetic algorithm which depends simply on the adaptability value. Such an algorithm has the advantages of both the immune algorithm and the genetic algorithm,thus serving the purpose of not only enhancing the individual adaptability but maintaining the individual diversity as well. By use of the identifying function of the antigen memory,the global search capability of the immune genetic algorithm is raised,thereby avoiding the occurrence of the premature phenomenon. By optimizing the structure of the section of the Huayuan tunnel,the current excavation area and support design are adjusted. A conclusion with applicable value is arrived at. At a higher computational speed and a higher efficiency,the current method is verified to have advantages in the optimization computation of the tunnel project. This also suggests that the application of the immune genetic algorithm has a practical significance to the stability assessment and informationization design of the wall rock of the tunnel.
基金supported by the National Key R&D Program of China(Grant No.2018YFC1505305)the National Major Scientific Instruments Development Project of China(Grant No.41627801)+2 种基金the State Key Program of the National Natural Science Foundation of China(Grant No.41731288 and 41772315)the Technology Research and Development Plan Program of Heilongjiang Province(Grant No.GA19A501)the Open Research Fund Program of the State Key Laboratory for Geomechanics and Deep Underground Engineering of China(Grant No.SKLGDUEK1807)。
文摘Mountain tunnels in cold regions are vulnerable to adverse effects of freezing action.Thus,it is necessary to identify the lining responses of shallow mountain tunnels subjected to freezing action.To quantify the influence of freezing action and key design parameters(such as cross-sectional shape;lining thickness;and waterproof measures)on the lining response,a thermal-hydro-mechanical coupled finite element(FE)model is established and verified.Then,specific consideration is given to the lining internal force and resulting axial stresses.And the influences of the cross-sectional shape,concrete parameters,and waterproof measures on the lining responses are investigated.Generally,the rectangular tunnel has the worst security;the circular tunnel is the safest.On the other hand,when the thermal conductivity is less than 2.2[W/(m·K)],a greater thermal conductivity will cause a greater risk of damage to the lining.Moreover,the drainage plate can reduce the value of minimum axial stresses,whether frozen or not,even eliminating the tensiondamaged area.Overall,this study helps to estimate the lining responses and prevent frost damages for shallow mountain tunnels during freezing period.
基金the Postgraduate Research&Practice Innovation Program of Jiangsu Province,China(Grant No.KYCX21_2368)。
文摘The use of explosives is restricted on some important holidays,and the handling of unexploded charge is very dangerous.Therefore,an innovative non-explosive technology called instantaneous expansion(IE)was developed for tunneling.IE,whose components are derived from solid wastes such as coal gangue and straw conduces to realizing the reuse of waste.Moreover,its cost is lower than explosives.Blind guns of IE are easy to treat with water.The IE tunneling method is classified into two categories,i.e.IE with a single fracture(IESF)and IE with multiple fractures(IEMF),which are used to form the tunnel crosssection directionally cross-section and to fragment the rocks inside the cross-section,respectively.In this study,the principle of IE tunneling was elaborated first.Then,tunneling experiments and numerical simulations were performed on IE,conventional blasting(CB)and shaped charge blasting(SCB)in comparison.The experimental and numerical results show that IE achieved the best performance of directional rock breaking and corresponded to the most minor excavation-induced damage zone of the surrounding rock.Besides,the tunnel cross-section created by IE was flat and smooth.Comparing IE with CB and SCB,the over/under-excavation area decreased by 64%and 17%,and the excavation-induced damage zone fell by 26%and 11%,respectively.The range of the loose circle is reduced,which is conducive to improving the long-term stability of the roadway.The research provides a safe and economical tunneling method with excellent application prospects.
基金supported by the National Key Research and Development Program of China (Grant No. 2017YFC0805401)the National Natural Science Foundation of China (Grant No. 51738002)+1 种基金the China Railway Corporation Research and Development Program of Science and Technology (Grant No. 2014004-C)the Fundamental Research Funds for the Central Universities (Grant No. C17JB00030)。
文摘To study the mechanical responses of large cross-section tunnel reinforced by pretensioned rock bolts and anchor cables, an analytical model is proposed. Considering the interaction between rock mass and bolt-cable support, the strain softening characteristic of rock mass, the elastic-plastic characteristic of bolt-cable support, and the delay effect of installation are considered in the model. To solve the different mechanical cases of tunneling reinforced by bolt-cable support, an analytical approach has been put forward to get the solutions of stress and displacement associated with tunneling. The proposed analytical model is verified by numerical simulation. Moreover, parametric analysis is performed to study the effects of pretension force,cross-section area, length, and supporting density of bolt-cable support on tunnel reinforcement, which can provide references for determining these parameters in tunnel design. Based on the analytical model, a new Ground Response Curve(GRC)considering the reinforcement of bolt-cable support is obtained, which shows the pretension forces and the timely installation are important in bolt-cable support. In addition, the proposed model is applied to the analysis of the Great Wall Station Tunnel, a high-speed railway tunnel with a super large cross-section, which shows that the analytical model of bolt-cable support was a useful tool for preliminary design of large cross-section tunnel.
基金financially supported by Special Fund for Basic Scientific Research of Central Colleges ( No. 2013G2241019 )Shaanxi Province Science & Technology Fund ( No . 2013KW03 )Xi'an City Science & Technology Fund ( No . CX1252 ( 8 ) )
文摘In recent years, the use of terrestrial laser scanning (TLS) technique in engineering surveys is gaining an increasing interest due to the advantages of non-contact, rapidity, high accuracy, and large scale. Millions of accurate 3D points (mm level accuracy) can be delivered by this technique with a high point density in a short time (up to 1 million points per second), which makes it a poten- tial technique for large scale applications in engineering environments such as tunnels, bridges, and heritage buildings. Tunnels, in particular those with long lengths, create great challenges for surveyors to obtain the satisfactory scanned data. This paper presents a short history of TLS techniques used for tunnels. A general overview of TLS techniques is given, followed by a review of several applications of TLS for tunnels. These applications are classified as: detecting geological features of drilling tun- nels, monitoring the geometry of tunnels during excavation, making deformation measurements, and extracting features. The review emphasizes how TLS techniques can be used to measure various aspects of tunnels. It is clear that TLS techniques are not yet a common tool for tunnel investigations, but there is still a huge potential to excavate.