期刊文献+
共找到25篇文章
< 1 2 >
每页显示 20 50 100
Point cloud-based environment reconstruction and ray tracing simulations for railway tunnel channels
1
作者 Ziyi Qi Ruisi He +6 位作者 Mi Yang Xuejian Zhang Bo Ai Weiming Li Shaopeng Wang Wenpu Sun Lizhe Li 《High-Speed Railway》 2023年第4期241-247,共7页
Radio propagation environment plays a critical role in the performance of wireless communication systems,and understanding channel characteristics is vital for ensuring reliable communication links and optimizing syst... Radio propagation environment plays a critical role in the performance of wireless communication systems,and understanding channel characteristics is vital for ensuring reliable communication links and optimizing system performance.Ray tracing is an effective method to investigate propagation characteristics in a complex environment,and how to quickly and accurately obtain environmental information needs to be solved.This paper presents dynamic environment reconstruction and ray tracing simulation in railway tunnel environment based on Simultaneous Localization and Mapping(SLAM)algorithm and Poisson reconstruction algorithm.Accurate channel parameters are obtained and analyzed based on ray tracing simulation.Both straight and curved tunnels are considered and investigated,and the results show the channel characteristics in complex railway tunnel environments. 展开更多
关键词 railway communication tunnelS Ray tracing Environment reconstruction Wireless channel
下载PDF
Deformation characteristics and safety assessment of a high-speed railway induced by undercutting metro tunnel excavation 被引量:19
2
作者 Wangping Qian Taiyue Qi +2 位作者 Yunjian Zhao Yizhou Le Haiyang Yi 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2019年第1期88-98,共11页
Stratum deformation(settlement) is a challenging issue in tunnel engineering, especially when construction of metro tunnels has to undercut high-speed railway. For this purpose, we used the FLAC30 software to analyze ... Stratum deformation(settlement) is a challenging issue in tunnel engineering, especially when construction of metro tunnels has to undercut high-speed railway. For this purpose, we used the FLAC30 software to analyze the stratum settlement characteristics of high-speed railway at different crossing angles intersected by metro tunnel, in terms of ground settlement trough, stratum slip line and irregularity of ballastless tracks. According to the evolution of the stratum settlement at different angle regions, an optimized angle is proposed for the actual project design. In order to reduce the influence of stratum settlement on the safety of high-speed railway, an approach of safety assessment is proposed for the shield engineering undercutting high-speed railway, as per Chinese specifications using numerical results and on-site conditions. A case study is conducted for the shield tunnel section crossing the Wuhan-Guangzhou High-speed Railway between the Guangzhou North Railway Station and the Huacheng Road Station, which represents the first metro tunnel project passing below a high-speed railway in China. A series of measures is taken to ensure the safe excavation of the shield tunnel and the operation of the high-speed railway. The results can provide a technical support for performing a safety evaluation between high-speed railways and metro tunnels. 展开更多
关键词 METRO tunnel EXCAVATION High-speed railway SETTLEMENT characteristics Safety assessment Numerical simulation Case application
下载PDF
Model test on dynamic characteristics of invert and foundation soils of high-speed railway tunnel 被引量:12
3
作者 Huang Juan Yuan Tieying +2 位作者 Peng Limin Yu Jun Ding Zude 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2015年第3期549-559,共11页
A dynamic model test(CL = 4) at different velocities of train,namely different loading frequencies,is carried out to study the dynamic characteristics of a high-speed railway tunnel invert and its foundation soils.Not... A dynamic model test(CL = 4) at different velocities of train,namely different loading frequencies,is carried out to study the dynamic characteristics of a high-speed railway tunnel invert and its foundation soils.Not only are the accelerations,dynamic coefficients,dynamic stresses of the invert and foundation soils emphatically analyzed,their relationship with the velocity of the train are discussed in detail.Through laboratory testing,the attenuation of vibration propagating from up the rails is obtained and the calculation formula of the speed influence coefficient of the tunnel invert is preliminarily established.The depth of the foundation soils influenced by vibration is also determined in this study.It is shown that the responses of the tunnel invert and foundation soils to vibration are slightly increased with the velocity of the train;circumferential stresses in the bottom of the invert are tensile stresses and maximum stresses appear under the foot of the rails;the dynamic soil pressures of the foundation decrease quickly with the distance away from the tunnel invert and an exponential relationship exists between them. 展开更多
关键词 high speed railway tunnel dynamic characteristic M
下载PDF
Finite-State Markov Wireless Channel Modeling for Railway Tunnel Environments 被引量:3
4
作者 Cuiran Li Ling Liu Jianli Xie 《China Communications》 SCIE CSCD 2020年第2期30-39,共10页
In recent years,high-speed railways(HSRs)have developed rapidly with a high transportation capacity and high comfort level.A tunnel is a complex high-speed rail terrain environment.It is very important to establish an... In recent years,high-speed railways(HSRs)have developed rapidly with a high transportation capacity and high comfort level.A tunnel is a complex high-speed rail terrain environment.It is very important to establish an accurate channel propagation model for a railway tunnel environment to improve the safety of HSR operation.In this paper,a method for finite-state Markov chain(FSMC)channel modeling with least squares fitting based on non-uniform interval division is proposed.First,a path loss model is obtained according to measured data.The communication distance between the transmitter and receiver in the tunnel is non-uniformly divided into several large non-overlapping intervals based on the path loss model.Then,the Lloyd-Max quantization method is used to determine the threshold of the signal-to-noise ratio(SNR)and the channel state quantization value and obtain the FSMC state transition probability matrix.Simulation experiments show that the proposed wireless channel model has a low mean square error(MSE)and can accurately predict the received signal power in a railway tunnel environment. 展开更多
关键词 railway tunnel FSMC channel model SNR path loss
下载PDF
Experimental investigation on the invert stability of operating railway tunnels with different drainage systems using 3D printing technology 被引量:2
5
作者 Linyi Li Junsheng Yang +3 位作者 Jinyang Fu Shuying Wang Cong Zhang Maolong Xiang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2022年第5期1470-1485,共16页
In recent years, the invert anomalies of operating railway tunnels in water-rich areas occur frequently,which greatly affect the transportation capacity of the railway lines. Tunnel drainage system is a crucial factor... In recent years, the invert anomalies of operating railway tunnels in water-rich areas occur frequently,which greatly affect the transportation capacity of the railway lines. Tunnel drainage system is a crucial factor to ensure the invert stability by regulating the external water pressure(EWP). By means of a threedimensional(3D) printing model, this paper experimentally investigates the deformation behavior of the invert for the tunnels with the traditional drainage system(TDS) widely used in China and its optimized drainage system(ODS) with bottom drainage function. Six test groups with a total of 110 test conditions were designed to consider the design factors and environmental factors in engineering practice,including layout of the drainage system, blockage of the drainage system and groundwater level fluctuation. It was found that there are significant differences in the water discharge, EWP and invert stability for the tunnels with the two drainage systems. Even with a dense arrangement of the external blind tubes, TDS was still difficult to eliminate the excessive EWP below the invert, which is the main cause for the invert instability. Blockage of drainage system further increased the invert uplift and aggravated the track irregularity, especially when the blockage degree is more than 50%. However, ODS can prevent these invert anomalies by reasonably controlling the EWP at tunnel bottom. Even when the groundwater level reached 60 m and the blind tubes were fully blocked, the invert stability can still be maintained and the railway track experienced a settlement of only 1.8 mm. Meanwhile, the on-site monitoring under several rainstorms further showed that the average EWP of the invert was controlled within 84 k Pa, while the maximum settlement of the track slab was only 0.92 mm, which also was in good agreement with the results of model test. 展开更多
关键词 Operating railway tunnels Invert stability tunnel drainage system Three-dimensional(3D)printing technology Model test
下载PDF
New technologies for high-risk tunnel construction in GuiyangGuangzhou high-speed railway 被引量:2
6
作者 Yubao Zhao Shougen Chen +1 位作者 Xinrong Tan Ma Hui 《Journal of Modern Transportation》 2013年第4期258-265,共8页
Based on the construction of high risk tunnels in Guiguang-Guangzhou high-speed railway, several new technologies were developed for high-risk tunnel con- struction. First, an integrated advanced geological predic- ti... Based on the construction of high risk tunnels in Guiguang-Guangzhou high-speed railway, several new technologies were developed for high-risk tunnel con- struction. First, an integrated advanced geological predic- tion was developed for tunneling in karst area. Then, a new system of ventilation by involving the dedusting technol- ogy was proposed and used in the field, which received a good air quality. Finally, a method to minimize the dis- tance between the working face and the invert installation was proposed by optimizing the invert installation and adopting the micro bench method. Applying the method to the project obtained an excellent result. The achievement obtained for this study would be able to provide a valuable reference to similar projects in the future. 展开更多
关键词 tunneling engineering High-speed railway New technologies High-risk tunnel
下载PDF
Reasonable compensation coefficient of maximum gradient in long railway tunnels 被引量:1
7
作者 Sirong YI Liangtao NIE Yanheng CHEN Fangfang QIN 《Journal of Modern Transportation》 2011年第1期12-18,共7页
This paper deals with the theory and calculation methods for compensation of the gradient in railway tunnels through theoretical analysis, numerical calculation, and statistic regression methods. On the basis of the p... This paper deals with the theory and calculation methods for compensation of the gradient in railway tunnels through theoretical analysis, numerical calculation, and statistic regression methods. On the basis of the principle that the resultant force is zero, the formula of the maximum calculated gradient was derived for the freight and passenger line and high-speed passenger special line. The formula of aerodynamic drag in tunnel is provided using the domestic and foreign relevant experimental investigations, and revised with modem train and engineering parameters. A calculation model of aerodynamic drag when the train goes through a single-tracked tunnel was built. Finally, the concept of maximum calculated gradient was adopted to revise the formula for compensation of the gradient in railway tunnels. 展开更多
关键词 railway tunnel maximum gradient PROFILE gradient compensation
下载PDF
Structural mechanism and construction method of mud and water inrush in Xiangyun tunnel of Guangtong-Dali railway
8
作者 WANG Yawei 《Global Geology》 2019年第3期167-178,共12页
Mud and water inrush in tunnel is a common problem in the construction process. Nowadays, the research and classification on this are mostly focused on karst situations. According to the characteristics of the surroun... Mud and water inrush in tunnel is a common problem in the construction process. Nowadays, the research and classification on this are mostly focused on karst situations. According to the characteristics of the surrounding rock and damage forms of the tunnel in the studied area, the author analyzed the geological and structural characteristics of mud and water inrush in tunnel and obtained their construction type. Meanwhile, the advanced water detection under the complex geological conditions was studied by using induced polarization method, transient electromagnetic method and three-dimensional seismic method, it can be concluded that the water-rich fracture zone exists within the detection range with a risk of large mud and water inrush disaster. The concrete construction treatment measures are put forward:①cement-water glass binary slurry is selected as the material for ground and hole grouting, its advantage is that the gel time can be controlled, and it has certain grout ability in the strata with large permeability coeffcient, which is conducive to excavate construction immediately after grouting.②applying the mature retrograde grouting construction can reduce grouting time and improve the excavation efficiency. 展开更多
关键词 MUD and water inrush geological model Xiangyun tunnel Guangtong-Dali railway STRUCTURAL mechanism construction method
下载PDF
Viscoplastic solutions of time-dependent deformation for tunnels in swelling rock mass considering stress release
9
作者 Gengyun Liu Youliang Chen +1 位作者 HyonChol Rim Rafig Azzam 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第8期2053-2071,共19页
Excavation and control of tunneling responses in swelling soft-rock tunnels of Sichuan-Tibet railway under seepage conditions were studied.For this,a fractional viscoplastic(FVP)model for swelling soft rocks was estab... Excavation and control of tunneling responses in swelling soft-rock tunnels of Sichuan-Tibet railway under seepage conditions were studied.For this,a fractional viscoplastic(FVP)model for swelling soft rocks was established by introducing Abel dashpot and unsteady viscosity coefficient,considering additional swelling deformation and damage of rock caused by humidity effect.In view of the FVP model,the viscoplastic deformation solutions for rock mass surrounding tunnel under seepage conditions were derived and long-term mechanical responses of swelling rocks upon tunnel excavation were analyzed.Next,a stress release coefficient considering seepage and creep was proposed,based on which control responses considering stress release and failure mechanism of stress release measures were analyzed.The results showed that:(i)The one-dimensional(1D)FVP model has a good application for swelling rock and the three-dimensional(3D)FVP model could well describe the whole creep process of rock mass despite a much higher creep attenuation rate in the first stage of creep;and(ii)An appropriate stress release and deformation of surrounding rocks could effectively reduce the supporting resistance.However,upon a large stress release,the radius of plastic region could increase significantly,and the strength of the surrounding rock mass decreases greatly.The proposed solution could provide a theoretical framework for capturing the excavation and support responses for tunneling in swelling rock mass in consideration of time effect. 展开更多
关键词 Sichuan-tibet railway Viscoplastic deformation Stress release Fractional model tunneling engineering
下载PDF
Distribution characteristics and the evolution law of excavation damage zone in the large-span transition section of high-speed railway tunnel based on microseismic monitoring
10
作者 Ao Li Dingli Zhang +2 位作者 Zhenyu Sun Jun Huang Fei Dong 《Railway Sciences》 2022年第1期56-75,共20页
Purpose–The microseismic monitoring technique has great advantages on identifying the location,extent and the mechanism of damage process occurring in rock mass.This study aims to analyze distribution characteristics... Purpose–The microseismic monitoring technique has great advantages on identifying the location,extent and the mechanism of damage process occurring in rock mass.This study aims to analyze distribution characteristics and the evolution law of excavation damage zone of surrounding rock based on microseismic monitoring data.Design/methodology/approach–In situ test using microseismic monitoring technique is carried out in the large-span transition tunnel of Badaling Great Wall Station of Beijing-Zhangjiakou high-speed railway.An intelligent microseismic monitoring system is built with symmetry monitoring point layout both on the mountain surface and inside the tunnel to achieve three-dimensional and all-round monitoring results.Findings–Microseismic events can be divided into high density area,medium density area and low density area according to the density distribution of microseismic events.The positions where the cumulative distribution frequencies of microseismic events are 60 and 80%are identified as the boundaries between high and medium density areas and between medium and low density areas,respectively.The high density area of microseismic events is regarded as the high excavation damage zone of surrounding rock,which is affected by the grade of surrounding rock and the span of tunnel.The prediction formulas for the depth of high excavation damage zone of surrounding rock at different tunnel positions are given considering these two parameters.The scale of the average moment magnitude parameters of microseismic events is adopted to describe the damage degree of surrounding rock.The strong positive correlation and multistage characteristics between the depth of excavation damage zone and deformation of surrounding rock are revealed.Based on the depth of high excavation damage zone of surrounding rock,the prestressed anchor cable(rod)is designed,and the safety of anchor cable(rod)design parameters is verified by the deformation results of surrounding rock.Originality/value–The research provides a new method to predict the surrounding rock damage zone of large-span tunnel and also provides a reference basis for design parameters of prestressed anchor cable(rod). 展开更多
关键词 High-speed railway Large-span tunnel Excavation damage zone Microseismic monitoring
下载PDF
Heterogeneity identification method for surrounding rock of large-section rock tunnel faces based on support vector machine
11
作者 Wenhao Yi Mingnian Wang +4 位作者 Jianjun Tong Siguang Zhao Jiawang Li Dengbin Gui Xiao Zhang 《Railway Sciences》 2023年第1期48-67,共20页
Purpose–The purpose of the study is to quickly identify significant heterogeneity of surrounding rock of tunnel face that generally occurs during the construction of large-section rock tunnels of high-speed railways.... Purpose–The purpose of the study is to quickly identify significant heterogeneity of surrounding rock of tunnel face that generally occurs during the construction of large-section rock tunnels of high-speed railways.Design/methodology/approach–Relying on the support vector machine(SVM)-based classification model,the nominal classification of blastholes and nominal zoning and classification terms were used to demonstrate the heterogeneity identification method for the surrounding rock of tunnel face,and the identification calculation was carried out for the five test tunnels.Then,the suggestions for local optimization of the support structures of large-section rock tunnels were put forward.Findings–The results show that compared with the two classification models based on neural networks,the SVM-based classification model has a higher classification accuracy when the sample size is small,and the average accuracy can reach 87.9%.After the samples are replaced,the SVM-based classification model can still reach the same accuracy,whose generalization ability is stronger.Originality/value–By applying the identification method described in this paper,the significant heterogeneity characteristics of the surrounding rock in the process of two times of blasting were identified,and the identification results are basically consistent with the actual situation of the tunnel face at the end of blasting,and can provide a basis for local optimization of support parameters. 展开更多
关键词 Rock tunnel Surrounding rock HETEROGENEITY Support vector machine High-speed railway
下载PDF
Case Study on Synchronous Construction Technology for Secondary Lining of Large-diameter Single track Shiel Shield-bored ored Tunnel
12
作者 WANG Zhenfei ZHAI Jinying(Translated) 《Chinese Railways》 2023年第2期29-34,共6页
The synchronous construction of the secondary lining during the boring of large-diameter shield faces challenges such as the design of the lining jumbo,the high requirements on the performance for the lining jumbo,the... The synchronous construction of the secondary lining during the boring of large-diameter shield faces challenges such as the design of the lining jumbo,the high requirements on the performance for the lining jumbo,the organization of the construction activities in the small and confined area,the horizontal transportation for shield boring and high safety management requirements.A super-long invert lining construction jumbo,as well as the matching California switch,is developed,which provides solution for the confliction between the invert lining construction and the horizontal transportation.The procedure and method for the synchronous operation of the shield boring and the secondary lining are developed by referring to the synchronous construction of the secondary lining during the boring of the TBMs in hard rocks.Due to the adoption of the synchronous operation of the shield boring and the secondary lining,the construction period is shortened and the construction cost is reduced.The paper can provide reference for the synchronous construction of the secondary lining in similar projects in the future. 展开更多
关键词 large-diameter shield-bored tunnel synchronous construction of secondary lining super-long invert lining construction jumbo California switch "arch+side wall"lining jumbo
下载PDF
A Study of the Suitable Measurement Location and Metrics for Assessing the Vibration Source Strength Based on the Field-Testing Data of Nanchang Underground Railway 被引量:2
13
作者 Ling Zhang Xiaoyan Lei +1 位作者 Jian Jiang Qingsong Feng 《Sound & Vibration》 2018年第5期22-27,共6页
Underground railway vibration source strength is one of the key values used for environmental impact assessment and the evaluation of mitigation measure’s performance.However,currently there is no international stand... Underground railway vibration source strength is one of the key values used for environmental impact assessment and the evaluation of mitigation measure’s performance.However,currently there is no international standard of measuring the underground railway vibration source strength for such purposes.The available local standards and industrial guidelines do not agree on measurement locations as well as the metrics for presenting the source strength.This has caused many confusions.This paper aims to study the suitable measurement location and metrics using the data from a large scale field-testing carried out at the Nanchang underground railway(Metro Line 1,China)in 2017.200 passing trains were recorded during the test at two different sections of the railway line,one with the spring floating slab installed and the other without.Three locations were chosen at each section,including one in the middle of the track and two on the tunnel wall at different heights.Based on the results of statistical analysis,the maximum of z-weighted vertical vibration level(VLzmax)obtained at a lower measurement location on the tunnel wall is the best for representing the underground railway vibration source strength,which is 76.66 dB obtained from this study. 展开更多
关键词 Underground railway tunnel vibration source strength floating slab statistics analysis
下载PDF
Wind tunnel test on the effect of metal net fences on sand flux in a Gobi Desert, China 被引量:16
14
作者 WANG Tao QU Jianjun +2 位作者 LING Yuquan XIE Shengbo XIAO Jianhua 《Journal of Arid Land》 SCIE CSCD 2017年第6期888-899,共12页
The Lanzhou-Xinjiang High-speed Railway runs through an expansive windy area in a Gobi Desert, and sand-blocking fences were built to protect the railway from destruction by wind-blown sand. However, the shielding eff... The Lanzhou-Xinjiang High-speed Railway runs through an expansive windy area in a Gobi Desert, and sand-blocking fences were built to protect the railway from destruction by wind-blown sand. However, the shielding effect of the sand-blocking fence is below the expectation. In this study, effects of metal net fences with porosities of 0.5 and 0.7 were tested in a wind tunnel to determine the effectiveness of the employed two kinds of fences in reducing wind velocity and restraining wind-blown sand. Specifically, the horizontal wind velocities and sediment flux densities above the gravel surface were measured under different free-stream wind velocities for the following conditions: no fence at all, single fence with a porosity of 0.5, single fence with a porosity of 0.7, double fences with a porosity of 0.5, and double fences with a porosity of 0.7. Experimental results showed that the horizontal wind velocity was more significantly decreased by the fence with a porosity of 0.5, especially for the double fences. The horizontal wind velocity decreased approximately 65% at a distance of 3.25 m(i.e., 13 H, where H denotes the fence height) downwind the double fences, and no reverse flow or vortex was observed on the leeward side. The sediment flux density decreased exponentially with height above the gravel surface downwind in all tested fences. The reduction percentage of total sediment flux density was higher for the fence with a porosity of 0.5 than for the fence with a porosity of 0.7, especially for the double fences. Furthermore, the decreasing percentage of total sediment flux density decreased with increasing free-stream wind velocity. The results suggest that compared with metal net fence with a porosity of 0.7, the metal net fence with a porosity of 0.5 is more effective for controlling wind-blown sand in the expansive windy area where the Lanzhou-Xinjiang High-speed Railway runs through. 展开更多
关键词 wind-blown sand wind tunnel experiment porous fence flow field sediment flux density Lanzhou-Xinjiang High-speed railway Gobi Desert
下载PDF
Vehicle–track–tunnel dynamic interaction:a finite/infinite element modelling method 被引量:1
15
作者 Lei Xu Wanming Zhai 《Railway Engineering Science》 2021年第2期109-126,共18页
The aim of this study is to develop coupled matrix formulations to characterize the dynamic interaction between the vehicle,track,and tunnel.The vehicle–track coupled system is established in light of vehicle–track ... The aim of this study is to develop coupled matrix formulations to characterize the dynamic interaction between the vehicle,track,and tunnel.The vehicle–track coupled system is established in light of vehicle–track coupled dynamics theory.The physical characteristics and mechanical behavior of tunnel segments and rings are modeled by the finite element method,while the soil layers of the vehicle–track–tunnel(VTT)system are modeled as an assemblage of 3-D mapping infinite elements by satisfying the boundary conditions at the infinite area.With novelty,the tunnel components,such as rings and segments,have been coupled to the vehicle–track systems using a matrix coupling method for finite elements.The responses of sub-systems included in the VTT interaction are obtained simultaneously to guarantee the solution accuracy.To relieve the computer storage and save the CPU time for the large-scale VTT dynamics system with high degrees of freedoms,a cyclic calculation method is introduced.Apart from model validations,the necessity of considering the tunnel substructures such as rings and segments is demonstrated.In addition,the maximum number of elements in the tunnel segment is confirmed by numerical simulations. 展开更多
关键词 Vehicle-track-tunnel interaction railway tunnel Finite elements Infinite elements Dynamic modelling
下载PDF
A History of the Urban Underground Tunnel (4000 B.C.E. - 1900 C.E.)
16
作者 Robert Steven Diamond Brian Garret Kassel 《Journal of Transportation Technologies》 2018年第1期11-43,共33页
Generally hidden from public view, out of our daily thoughts, and literally under our feet, are myriad urban underground tunnels that make our modern megacities possible. From their ancient beginnings in antiquity, as... Generally hidden from public view, out of our daily thoughts, and literally under our feet, are myriad urban underground tunnels that make our modern megacities possible. From their ancient beginnings in antiquity, as a means of supplying fresh water and draining waste water from cities, underground tunnels evolved into a means of providing high capacity rail mass transit in our most densely populated urban centers. This paper provides a broad overview of the evolution of urban tunnels across a 6000 year time span and includes the specific engineering formulas/computations for the earliest 19th century subways/infrastructure projects based on the Roman vaulted arch tunnel. 展开更多
关键词 Subway SUBTERRANEAN Passageway Ancient Underground MESOPOTAMIA Greece Rome Cut and Cover Cloaca MAXIMA Cryptoporticus CROTON Aq-ueduct Arch tunnel Atlantic Avenue tunnel LONDON railway LONDON Tube Beach/Greathead Shield 19th Century Arched tunnel Calculations
下载PDF
Comparative analysis between single-train passing and double-train intersection in a tunnel
17
作者 Jianming DU Qian FANG +1 位作者 Xuan ZHANG Hualao WANG 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2024年第5期429-442,共14页
Aerodynamic pressure significantly impacts the scientific evaluation of tunnel service performance.The aerodynamic pressure of two trains running in a double-track tunnel is considerably more complicated than that of ... Aerodynamic pressure significantly impacts the scientific evaluation of tunnel service performance.The aerodynamic pressure of two trains running in a double-track tunnel is considerably more complicated than that of a single train.We used the numerical method to investigate the difference in aerodynamic pressure between a single train and two trains running in a double-track tunnel.First,the numerical method was verified by comparing the results of numerical simulation and on-site monitoring.Then,the characteristics of aerodynamic pressure were studied.Finally,the influence of various train-tunnel factors on the characteristics of aerodynamic pressure was investigated.The results show that the aerodynamic pressure variation can be divided into stage I:irregular pressure fluctuations before the train tail leaves the tunnel exit,and stage II:periodic pressure declines after the train tail leaves the tunnel exit.In addition,the aerodynamic pressure simultaneously jumps positively or drops negatively for a single train or two trains running in double-track tunnel scenarios.The pressure amplitude in the two-train case is higher than that for a single train.The maximum positive peak pressure difference(P_(STP))and maximum negative peak pressure difference(P_(STN))increase as train speed rises to the power from 2.256 to 2.930 in stage I.The P_(STP) and P_(STN) first increase and then decrease with the increase of tunnel length in stage I.The P_(STP) and P_(STN) increase as the blockage ratio rises to the power from 2.032 to 2.798 in stages I and II. 展开更多
关键词 railway tunnel Aerodynamic effect Pressure characteristic Train speed tunnel length Blockage ratio
原文传递
On dynamic analysis method for large-scale train-track-substructure interaction 被引量:2
18
作者 Lei Xu 《Railway Engineering Science》 2022年第2期162-182,共21页
Train–track–substructure dynamic interaction is an extension of the vehicle–track coupled dynamics.It contributes to evaluate dynamic interaction and performance between train–track system and its substructures.Fo... Train–track–substructure dynamic interaction is an extension of the vehicle–track coupled dynamics.It contributes to evaluate dynamic interaction and performance between train–track system and its substructures.For the first time,this work devotes to presenting engineering practical methods for modeling and solving such large-scale train–track–substructure interaction systems from a unified viewpoint.In this study,a train consists of several multi-rigid-body vehicles,and the track is modeled by various finite elements.The track length needs only satisfy the length of a train plus boundary length at two sides,despite how long the train moves on the track.The substructures and their interaction matrices to the upper track are established as independent modules,with no need for additionally building the track structures above substructures,and accordingly saving computational cost.Track–substructure local coordinates are defined to assist the confirming of the overlapped portions between the train–track system and the substructural system to effectively combine the cyclic calculation and iterative solution procedures.The advancement of this model lies in its convenience,efficiency and accuracy in continuously considering the vibration participation of multi-types of substructures against the moving of a train on the track.Numerical examples have shown the effectiveness of this method;besides,influence of substructures on train–track dynamic behaviors is illustrated accompanied by clarifying excitation difference of different track irregularity spectrums. 展开更多
关键词 TRAIN Track dynamic interaction railway substructures Finite elements Dynamics system Iterative solution tunnel Bridge
下载PDF
Scientific problems and research proposals for Sichuan–Tibet railway tunnel construction 被引量:3
19
作者 Dingli Zhang Zhenyu Sun Qian Fang 《Underground Space》 SCIE EI 2022年第3期419-439,共21页
The Sichuan–Tibet railway construction has received significant attention from both China and abroad.The new section from Ya’an to Nyingchi is about 1018.6 km long,including 69 tunnels with a total length of 841.7 k... The Sichuan–Tibet railway construction has received significant attention from both China and abroad.The new section from Ya’an to Nyingchi is about 1018.6 km long,including 69 tunnels with a total length of 841.7 km.The longest tunnel(Yigong tunnel)is 42.4 km long.The successful construction of the Sichuan–Tibet railway depends largely on tunnel construction.Due to the complex conditions,tunnel construction for the Sichuan–Tibet railway poses great challenges to the research community.This paper aims to illustrate the necessity of interdisciplinary and joint research to solve problems associated with tunnel construction that will be encountered in the immediate future and facilitate the communication and exchange of ideas between disciplines.To this end,based on a systematic analysis of the available data related to Sichuan–Tibet railway tunnels,six major aspects of the geology,environment,and engineering conditions are identified.Next,based on the engineering responses from the Sichuan–Tibet railway tunnels,potential technical problems and risk characteristics are predicted and evaluated.Further,six key scientific issues are identified and discussed based on a coupled multi-layer analysis of essential tunnel engineering issues.Finally,research directions,technical ideas,and research methods that should be carried out for this project are proposed. 展开更多
关键词 Sichuan–Tibet railway tunnels Key scientific problems Complex stress environment Deformation mechanism of surrounding rock Dynamic response
原文传递
Unsteady slipstream of a train passing through a high-speed railway tunnel with a cave 被引量:1
20
作者 Xiaohui Xiong Rilong Cong +5 位作者 Xiaobai Li Yutang Geng Mingzan Tang Shujun Zhou Yanling Na Chongxu Jiang 《Transportation Safety and Environment》 EI 2022年第4期107-120,共14页
The cave is of great importance for the storage of equipment and to avoid having workers in the tunnel,but it changes the tunnel section,leads to a change of slipstream and affects the safety of trains and workers.The... The cave is of great importance for the storage of equipment and to avoid having workers in the tunnel,but it changes the tunnel section,leads to a change of slipstream and affects the safety of trains and workers.The Re-normalization group(RNG)k-εturbulence method is used to investigate the slipstream induced by a single train passing through a double-track tunnel at 350 km/h.The slipstream in a tunnel with and without a cave is compared.The slipstream components in three directions are reported comprehensively.The results show that the existence of a cave changes the slipstream at the tail of the train.At measurement points before and after the train passes the cave,the intensity of the slipstream at the tail ismitigated;as the train passes the cave,the tail slipstream is enhanced to a certain extent.With increasing lateral distance,the peak value of the slipstream with a cave decreases faster than that without a cave.These findings suggest that the presence of a cave mitigates the slipstream intensity,but special attention should be paid to the design of ancillary facilities,especially their relative location. 展开更多
关键词 High-speed train railway tunnel CAVE SLIPSTREAM
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部