Many existing techniques to acquire dual-energy X-ray absorptiometry(DXA)images are unable to accurately distinguish between bone and soft tissue.For the most part,this failure stems from bone shape variability,noise ...Many existing techniques to acquire dual-energy X-ray absorptiometry(DXA)images are unable to accurately distinguish between bone and soft tissue.For the most part,this failure stems from bone shape variability,noise and low contrast in DXA images,inconsistent X-ray beam penetration producing shadowing effects,and person-to-person variations.This work explores the feasibility of using state-of-the-art deep learning semantic segmentation models,fully convolutional networks(FCNs),SegNet,and U-Net to distinguish femur bone from soft tissue.We investigated the performance of deep learning algorithms with reference to some of our previously applied conventional image segmentation techniques(i.e.,a decision-tree-based method using a pixel label decision tree[PLDT]and another method using Otsu’s thresholding)for femur DXA images,and we measured accuracy based on the average Jaccard index,sensitivity,and specificity.Deep learning models using SegNet,U-Net,and an FCN achieved average segmentation accuracies of 95.8%,95.1%,and 97.6%,respectively,compared to PLDT(91.4%)and Otsu’s thresholding(72.6%).Thus we conclude that an FCN outperforms other deep learning and conventional techniques when segmenting femur bone from soft tissue in DXA images.Accurate femur segmentation improves bone mineral density computation,which in turn enhances the diagnosing of osteoporosis.展开更多
An automated system is proposed for the detection and classification of GI abnormalities.The proposed method operates under two pipeline procedures:(a)segmentation of the bleeding infection region and(b)classification...An automated system is proposed for the detection and classification of GI abnormalities.The proposed method operates under two pipeline procedures:(a)segmentation of the bleeding infection region and(b)classification of GI abnormalities by deep learning.The first bleeding region is segmented using a hybrid approach.The threshold is applied to each channel extracted from the original RGB image.Later,all channels are merged through mutual information and pixel-based techniques.As a result,the image is segmented.Texture and deep learning features are extracted in the proposed classification task.The transfer learning(TL)approach is used for the extraction of deep features.The Local Binary Pattern(LBP)method is used for texture features.Later,an entropy-based feature selection approach is implemented to select the best features of both deep learning and texture vectors.The selected optimal features are combined with a serial-based technique and the resulting vector is fed to the Ensemble Learning Classifier.The experimental process is evaluated on the basis of two datasets:Private and KVASIR.The accuracy achieved is 99.8 per cent for the private data set and 86.4 percent for the KVASIR data set.It can be confirmed that the proposed method is effective in detecting and classifying GI abnormalities and exceeds other methods of comparison.展开更多
Image segmentation is crucial for various research areas. Manycomputer vision applications depend on segmenting images to understandthe scene, such as autonomous driving, surveillance systems, robotics, andmedical ima...Image segmentation is crucial for various research areas. Manycomputer vision applications depend on segmenting images to understandthe scene, such as autonomous driving, surveillance systems, robotics, andmedical imaging. With the recent advances in deep learning (DL) and itsconfounding results in image segmentation, more attention has been drawnto its use in medical image segmentation. This article introduces a surveyof the state-of-the-art deep convolution neural network (CNN) models andmechanisms utilized in image segmentation. First, segmentation models arecategorized based on their model architecture and primary working principle.Then, CNN categories are described, and various models are discussed withineach category. Compared with other existing surveys, several applicationswith multiple architectural adaptations are discussed within each category.A comparative summary is included to give the reader insights into utilizedarchitectures in different applications and datasets. This study focuses onmedical image segmentation applications, where the most widely used architecturesare illustrated, and other promising models are suggested that haveproven their success in different domains. Finally, the present work discussescurrent limitations and solutions along with future trends in the field.展开更多
Automatic segmentation of the liver and hepatic lesions from abdominal 3D comput-ed tomography(CT)images is fundamental tasks in computer-assisted liver surgery planning.However,due to complex backgrounds,ambiguous bo...Automatic segmentation of the liver and hepatic lesions from abdominal 3D comput-ed tomography(CT)images is fundamental tasks in computer-assisted liver surgery planning.However,due to complex backgrounds,ambiguous boundaries,heterogeneous appearances and highly varied shapes of the liver,accurate liver segmentation and tumor detection are stil-1 challenging problems.To address these difficulties,we propose an automatic segmentation framework based on 3D U-net with dense connections and globally optimized refinement.First-ly,a deep U-net architecture with dense connections is trained to learn the probability map of the liver.Then the probability map goes into the following refinement step as the initial surface and prior shape.The segmentation of liver tumor is based on the similar network architecture with the help of segmentation results of liver.In order to reduce the infuence of the surrounding tissues with the similar intensity and texture behavior with the tumor region,during the training procedure,I x liverlabel is the input of the network for the segmentation of liver tumor.By do-ing this,the accuracy of segmentation can be improved.The proposed method is fully automatic without any user interaction.Both qualitative and quantitative results reveal that the pro-posed approach is efficient and accurate for liver volume estimation in clinical application.The high correlation between the automatic and manual references shows that the proposed method can be good enough to replace the time-consuming and non-reproducible manual segmentation method.展开更多
Accurate segmentation of CT images of liver tumors is an important adjunct for the liver diagnosis and treatment of liver diseases.In recent years,due to the great improvement of hard device,many deep learning based m...Accurate segmentation of CT images of liver tumors is an important adjunct for the liver diagnosis and treatment of liver diseases.In recent years,due to the great improvement of hard device,many deep learning based methods have been proposed for automatic liver segmentation.Among them,there are the plain neural network headed by FCN and the residual neural network headed by Resnet,both of which have many variations.They have achieved certain achievements in medical image segmentation.In this paper,we firstly select five representative structures,i.e.,FCN,U-Net,Segnet,Resnet and Densenet,to investigate their performance on liver segmentation.Since original Resnet and Densenet could not perform image segmentation directly,we make some adjustments for them to perform live segmentation.Our experimental results show that Densenet performs the best on liver segmentation,followed by Resnet.Both perform much better than Segnet,U-Net,and FCN.Among Segnet,U-Net,and FCN,U-Net performs the best,followed by Segnet.FCN performs the worst.展开更多
This paper presents a novel computerized technique for the segmentation of nuclei in hematoxylin and eosin(H&E)stained histopathology images.The purpose of this study is to overcome the challenges faced in automat...This paper presents a novel computerized technique for the segmentation of nuclei in hematoxylin and eosin(H&E)stained histopathology images.The purpose of this study is to overcome the challenges faced in automated nuclei segmentation due to the diversity of nuclei structures that arise from differences in tissue types and staining protocols,as well as the segmentation of variable-sized and overlapping nuclei.To this extent,the approach proposed in this study uses an ensemble of the UNet architecture with various Convolutional Neural Networks(CNN)architectures as encoder backbones,along with stain normalization and test time augmentation,to improve segmentation accuracy.Additionally,this paper employs a Structure-Preserving Color Normalization(SPCN)technique as a preprocessing step for stain normalization.The proposed model was trained and tested on both single-organ and multi-organ datasets,yielding an F1 score of 84.11%,mean Intersection over Union(IoU)of 81.67%,dice score of 84.11%,accuracy of 92.58%and precision of 83.78%on the multi-organ dataset,and an F1 score of 87.04%,mean IoU of 86.66%,dice score of 87.04%,accuracy of 96.69%and precision of 87.57%on the single-organ dataset.These findings demonstrate that the proposed model ensemble coupled with the right pre-processing and post-processing techniques enhances nuclei segmentation capabilities.展开更多
The accurate segmentation of retinal vessels is a challenging taskdue to the presence of various pathologies as well as the low-contrast ofthin vessels and non-uniform illumination. In recent years, encoder-decodernet...The accurate segmentation of retinal vessels is a challenging taskdue to the presence of various pathologies as well as the low-contrast ofthin vessels and non-uniform illumination. In recent years, encoder-decodernetworks have achieved outstanding performance in retinal vessel segmentation at the cost of high computational complexity. To address the aforementioned challenges and to reduce the computational complexity, we proposea lightweight convolutional neural network (CNN)-based encoder-decoderdeep learning model for accurate retinal vessels segmentation. The proposeddeep learning model consists of encoder-decoder architecture along withbottleneck layers that consist of depth-wise squeezing, followed by fullconvolution, and finally depth-wise stretching. The inspiration for the proposed model is taken from the recently developed Anam-Net model, whichwas tested on CT images for COVID-19 identification. For our lightweightmodel, we used a stack of two 3 × 3 convolution layers (without spatialpooling in between) instead of a single 3 × 3 convolution layer as proposedin Anam-Net to increase the receptive field and to reduce the trainableparameters. The proposed method includes fewer filters in all convolutionallayers than the original Anam-Net and does not have an increasing numberof filters for decreasing resolution. These modifications do not compromiseon the segmentation accuracy, but they do make the architecture significantlylighter in terms of the number of trainable parameters and computation time.The proposed architecture has comparatively fewer parameters (1.01M) thanAnam-Net (4.47M), U-Net (31.05M), SegNet (29.50M), and most of the otherrecent works. The proposed model does not require any problem-specificpre- or post-processing, nor does it rely on handcrafted features. In addition,the attribute of being efficient in terms of segmentation accuracy as well aslightweight makes the proposed method a suitable candidate to be used in thescreening platforms at the point of care. We evaluated our proposed modelon open-access datasets namely, DRIVE, STARE, and CHASE_DB. Theexperimental results show that the proposed model outperforms several stateof-the-art methods, such as U-Net and its variants, fully convolutional network (FCN), SegNet, CCNet, ResWNet, residual connection-based encoderdecoder network (RCED-Net), and scale-space approx. network (SSANet) in terms of {dice coefficient, sensitivity (SN), accuracy (ACC), and the areaunder the ROC curve (AUC)} with the scores of {0.8184, 0.8561, 0.9669, and0.9868} on the DRIVE dataset, the scores of {0.8233, 0.8581, 0.9726, and0.9901} on the STARE dataset, and the scores of {0.8138, 0.8604, 0.9752,and 0.9906} on the CHASE_DB dataset. Additionally, we perform crosstraining experiments on the DRIVE and STARE datasets. The result of thisexperiment indicates the generalization ability and robustness of the proposedmodel.展开更多
Neurons can be abstractly represented as skeletons due to the filament nature of neurites.With the rapid development of imaging and image analysis techniques,an increasing amount of neuron skeleton data is being produ...Neurons can be abstractly represented as skeletons due to the filament nature of neurites.With the rapid development of imaging and image analysis techniques,an increasing amount of neuron skeleton data is being produced.In some scienti fic studies,it is necessary to dissect the axons and dendrites,which is typically done manually and is both tedious and time-consuming.To automate this process,we have developed a method that relies solely on neuronal skeletons using Geometric Deep Learning(GDL).We demonstrate the effectiveness of this method using pyramidal neurons in mammalian brains,and the results are promising for its application in neuroscience studies.展开更多
Background:In medical image analysis,the diagnosis of skin lesions remains a challenging task.Skin lesion is a common type of skin cancer that exists worldwide.Dermoscopy is one of the latest technologies used for the...Background:In medical image analysis,the diagnosis of skin lesions remains a challenging task.Skin lesion is a common type of skin cancer that exists worldwide.Dermoscopy is one of the latest technologies used for the diagnosis of skin cancer.Challenges:Many computerized methods have been introduced in the literature to classify skin cancers.However,challenges remain such as imbalanced datasets,low contrast lesions,and the extraction of irrelevant or redundant features.Proposed Work:In this study,a new technique is proposed based on the conventional and deep learning framework.The proposed framework consists of two major tasks:lesion segmentation and classification.In the lesion segmentation task,contrast is initially improved by the fusion of two filtering techniques and then performed a color transformation to color lesion area color discrimination.Subsequently,the best channel is selected and the lesion map is computed,which is further converted into a binary form using a thresholding function.In the lesion classification task,two pre-trained CNN models were modified and trained using transfer learning.Deep features were extracted from both models and fused using canonical correlation analysis.During the fusion process,a few redundant features were also added,lowering classification accuracy.A new technique called maximum entropy score-based selection(MESbS)is proposed as a solution to this issue.The features selected through this approach are fed into a cubic support vector machine(C-SVM)for the final classification.Results:The experimental process was conducted on two datasets:ISIC 2017 and HAM10000.The ISIC 2017 dataset was used for the lesion segmentation task,whereas the HAM10000 dataset was used for the classification task.The achieved accuracy for both datasets was 95.6% and 96.7%, respectively, which was higher thanthe existing techniques.展开更多
In the shape analysis community,decomposing a 3D shape intomeaningful parts has become a topic of interest.3D model segmentation is largely used in tasks such as shape deformation,shape partial matching,skeleton extra...In the shape analysis community,decomposing a 3D shape intomeaningful parts has become a topic of interest.3D model segmentation is largely used in tasks such as shape deformation,shape partial matching,skeleton extraction,shape correspondence,shape annotation and texture mapping.Numerous approaches have attempted to provide better segmentation solutions;however,the majority of the previous techniques used handcrafted features,which are usually focused on a particular attribute of 3Dobjects and so are difficult to generalize.In this paper,we propose a three-stage approach for using Multi-view recurrent neural network to automatically segment a 3D shape into visually meaningful sub-meshes.The first stage involves normalizing and scaling a 3D model to fit within the unit sphere and rendering the object into different views.Contrasting viewpoints,on the other hand,might not have been associated,and a 3D region could correlate into totally distinct outcomes depending on the viewpoint.To address this,we ran each view through(shared weights)CNN and Bolster block in order to create a probability boundary map.The Bolster block simulates the area relationships between different views,which helps to improve and refine the data.In stage two,the feature maps generated in the previous step are correlated using a Recurrent Neural network to obtain compatible fine detail responses for each view.Finally,a layer that is fully connected is used to return coherent edges,which are then back project to 3D objects to produce the final segmentation.Experiments on the Princeton Segmentation Benchmark dataset show that our proposed method is effective for mesh segmentation tasks.展开更多
As colon cancer is among the top causes of death, there is a growinginterest in developing improved techniques for the early detection of colonpolyps. Given the close relation between colon polyps and colon cancer,the...As colon cancer is among the top causes of death, there is a growinginterest in developing improved techniques for the early detection of colonpolyps. Given the close relation between colon polyps and colon cancer,their detection helps avoid cancer cases. The increment in the availability ofcolorectal screening tests and the number of colonoscopies have increasedthe burden on the medical personnel. In this article, the application of deeplearning techniques for the detection and segmentation of colon polyps incolonoscopies is presented. Four techniques were implemented and evaluated:Mask-RCNN, PANet, Cascade R-CNN and Hybrid Task Cascade (HTC).These were trained and tested using CVC-Colon database, ETIS-LARIBPolyp, and a proprietary dataset. Three experiments were conducted to assessthe techniques performance: (1) Training and testing using each databaseindependently, (2) Mergingd the databases and testing on each database independently using a merged test set, and (3) Training on each dataset and testingon the merged test set. In our experiments, PANet architecture has the bestperformance in Polyp detection, and HTC was the most accurate to segmentthem. This approach allows us to employ Deep Learning techniques to assisthealthcare professionals in the medical diagnosis for colon cancer. It is anticipated that this approach can be part of a framework for a semi-automatedpolyp detection in colonoscopies.展开更多
AIM: To explore a more accurate quantifying diagnosis method of diabetic macular edema(DME) by displaying detailed 3D morphometry beyond the gold-standard quantification indicator-central retinal thickness(CRT) and ap...AIM: To explore a more accurate quantifying diagnosis method of diabetic macular edema(DME) by displaying detailed 3D morphometry beyond the gold-standard quantification indicator-central retinal thickness(CRT) and apply it in follow-up of DME patients.METHODS: Optical coherence tomography(OCT) scans of 229 eyes from 160 patients were collected.We manually annotated cystoid macular edema(CME), subretinal fluid(SRF) and fovea as ground truths.Deep convolution neural networks(DCNNs) were constructed including U-Net, sASPP, HRNetV2-W48, and HRNetV2-W48+Object-Contextual Representation(OCR) for fluid(CME+SRF) segmentation and fovea detection respectively, based on which the thickness maps of CME, SRF and retina were generated and divided by Early Treatment Diabetic Retinopathy Study(ETDRS) grid.RESULTS: In fluid segmentation, with the best DCNN constructed and loss function, the dice similarity coefficients(DSC) of segmentation reached 0.78(CME), 0.82(SRF), and 0.95(retina).In fovea detection, the average deviation between the predicted fovea and the ground truth reached 145.7±117.8 μm.The generated macular edema thickness maps are able to discover center-involved DME by intuitive morphometry and fluid volume, which is ignored by the traditional definition of CRT>250 μm.Thickness maps could also help to discover fluid above or below the fovea center ignored or underestimated by a single OCT B-scan.CONCLUSION: Compared to the traditional unidimensional indicator-CRT, 3D macular edema thickness maps are able to display more intuitive morphometry and detailed statistics of DME, supporting more accurate diagnoses and follow-up of DME patients.展开更多
Objective To propose two novel methods based on deep learning for computer-aided tongue diagnosis,including tongue image segmentation and tongue color classification,improving their diagnostic accuracy.Methods LabelMe...Objective To propose two novel methods based on deep learning for computer-aided tongue diagnosis,including tongue image segmentation and tongue color classification,improving their diagnostic accuracy.Methods LabelMe was used to label the tongue mask and Snake model to optimize the labeling results.A new dataset was constructed for tongue image segmentation.Tongue color was marked to build a classified dataset for network training.In this research,the Inception+Atrous Spatial Pyramid Pooling(ASPP)+UNet(IAUNet)method was proposed for tongue image segmentation,based on the existing UNet,Inception,and atrous convolution.Moreover,the Tongue Color Classification Net(TCCNet)was constructed with reference to ResNet,Inception,and Triple-Loss.Several important measurement indexes were selected to evaluate and compare the effects of the novel and existing methods for tongue segmentation and tongue color classification.IAUNet was compared with existing mainstream methods such as UNet and DeepLabV3+for tongue segmentation.TCCNet for tongue color classification was compared with VGG16 and GoogLeNet.Results IAUNet can accurately segment the tongue from original images.The results showed that the Mean Intersection over Union(MIoU)of IAUNet reached 96.30%,and its Mean Pixel Accuracy(MPA),mean Average Precision(mAP),F1-Score,G-Score,and Area Under Curve(AUC)reached 97.86%,99.18%,96.71%,96.82%,and 99.71%,respectively,suggesting IAUNet produced better segmentation than other methods,with fewer parameters.Triplet-Loss was applied in the proposed TCCNet to separate different embedded colors.The experiment yielded ideal results,with F1-Score and mAP of the TCCNet reached 88.86% and 93.49%,respectively.Conclusion IAUNet based on deep learning for tongue segmentation is better than traditional ones.IAUNet can not only produce ideal tongue segmentation,but have better effects than those of PSPNet,SegNet,UNet,and DeepLabV3+,the traditional networks.As for tongue color classification,the proposed network,TCCNet,had better F1-Score and mAP values as compared with other neural networks such as VGG16 and GoogLeNet.展开更多
Image semantic segmentation is an important branch of computer vision of a wide variety of practical applications such as medical image analysis,autonomous driving,virtual or augmented reality,etc.In recent years,due ...Image semantic segmentation is an important branch of computer vision of a wide variety of practical applications such as medical image analysis,autonomous driving,virtual or augmented reality,etc.In recent years,due to the remarkable performance of transformer and multilayer perceptron(MLP)in computer vision,which is equivalent to convolutional neural network(CNN),there has been a substantial amount of image semantic segmentation works aimed at developing different types of deep learning architecture.This survey aims to provide a comprehensive overview of deep learning methods in the field of general image semantic segmentation.Firstly,the commonly used image segmentation datasets are listed.Next,extensive pioneering works are deeply studied from multiple perspectives(e.g.,network structures,feature fusion methods,attention mechanisms),and are divided into four categories according to different network architectures:CNN-based architectures,transformer-based architectures,MLP-based architectures,and others.Furthermore,this paper presents some common evaluation metrics and compares the respective advantages and limitations of popular techniques both in terms of architectural design and their experimental value on the most widely used datasets.Finally,possible future research directions and challenges are discussed for the reference of other researchers.展开更多
3D object recognition is a challenging task for intelligent and robot systems in industrial and home indoor environments.It is critical for such systems to recognize and segment the 3D object instances that they encou...3D object recognition is a challenging task for intelligent and robot systems in industrial and home indoor environments.It is critical for such systems to recognize and segment the 3D object instances that they encounter on a frequent basis.The computer vision,graphics,and machine learning fields have all given it a lot of attention.Traditionally,3D segmentation was done with hand-crafted features and designed approaches that didn’t achieve acceptable performance and couldn’t be generalized to large-scale data.Deep learning approaches have lately become the preferred method for 3D segmentation challenges by their great success in 2D computer vision.However,the task of instance segmentation is currently less explored.In this paper,we propose a novel approach for efficient 3D instance segmentation using red green blue and depth(RGB-D)data based on deep learning.The 2D region based convolutional neural networks(Mask R-CNN)deep learning model with point based rending module is adapted to integrate with depth information to recognize and segment 3D instances of objects.In order to generate 3D point cloud coordinates(x,y,z),segmented 2D pixels(u,v)of recognized object regions in the RGB image are merged into(u,v)points of the depth image.Moreover,we conducted an experiment and analysis to compare our proposed method from various points of view and distances.The experimentation shows the proposed 3D object recognition and instance segmentation are sufficiently beneficial to support object handling in robotic and intelligent systems.展开更多
Coronavirus has infected more than 753 million people,ranging in severity from one person to another,where more than six million infected people died worldwide.Computer-aided diagnostic(CAD)with artificial intelligenc...Coronavirus has infected more than 753 million people,ranging in severity from one person to another,where more than six million infected people died worldwide.Computer-aided diagnostic(CAD)with artificial intelligence(AI)showed outstanding performance in effectively diagnosing this virus in real-time.Computed tomography is a complementary diagnostic tool to clarify the damage of COVID-19 in the lungs even before symptoms appear in patients.This paper conducts a systematic literature review of deep learning methods for classifying the segmentation of COVID-19 infection in the lungs.We used the methodology of systematic reviews and meta-analyses(PRISMA)flow method.This research aims to systematically analyze the supervised deep learning methods,open resource datasets,data augmentation methods,and loss functions used for various segment shapes of COVID-19 infection from computerized tomography(CT)chest images.We have selected 56 primary studies relevant to the topic of the paper.We have compared different aspects of the algorithms used to segment infected areas in the CT images.Limitations to deep learning in the segmentation of infected areas still need to be developed to predict smaller regions of infection at the beginning of their appearance.展开更多
<div style="text-align:justify;"> The morbidity and mortality of the fetus is related closely with the neonatal respiratory morbidity, which was caused by the immaturity of the fetal lung primarily. Th...<div style="text-align:justify;"> The morbidity and mortality of the fetus is related closely with the neonatal respiratory morbidity, which was caused by the immaturity of the fetal lung primarily. The amniocentesis has been used in clinics to evaluate the maturity of the fetal lung, which is invasive, expensive and time-consuming. Ultrasonography has been developed to examine the fetal lung quantitatively in the past decades as a non-invasive method. However, the contour of the fetal lung required by existing studies was delineated in manual. An automated segmentation approach could not only improve the objectiveness of those studies, but also offer a quantitative way to monitor the development of the fetal lung in terms of morphological parameters based on the segmentation. In view of this, we proposed a deep learning model for automated fetal lung segmentation and measurement. The model was constructed based on the U-Net. It was trained by 3500 data sets augmented from 250 ultrasound images with both the fetal lung and heart manually delineated, and then tested on 50 ultrasound data sets. With the proposed method, the fetal lung and cardiac area were automatically segmented with the accuracy, average IoU, sensitivity and precision being 0.98, 0.79, 0.881 and 0.886, respectively. </div>展开更多
Early detection of the Covid-19 disease is essential due to its higher rate of infection affecting tens of millions of people,and its high number of deaths also by 7%.For that purpose,a proposed model of several stage...Early detection of the Covid-19 disease is essential due to its higher rate of infection affecting tens of millions of people,and its high number of deaths also by 7%.For that purpose,a proposed model of several stages was developed.The first stage is optimizing the images using dynamic adaptive histogram equalization,performing a semantic segmentation using DeepLabv3Plus,then augmenting the data by flipping it horizontally,rotating it,then flipping it vertically.The second stage builds a custom convolutional neural network model using several pre-trained ImageNet.Finally,the model compares the pre-trained data to the new output,while repeatedly trimming the best-performing models to reduce complexity and improve memory efficiency.Several experiments were done using different techniques and parameters.Accordingly,the proposed model achieved an average accuracy of 99.6%and an area under the curve of 0.996 in the Covid-19 detection.This paper will discuss how to train a customized intelligent convolutional neural network using various parameters on a set of chest X-rays with an accuracy of 99.6%.展开更多
In recent times,Internet of Things(IoT)and Deep Learning(DL)mod-els have revolutionized the diagnostic procedures of Diabetic Retinopathy(DR)in its early stages that can save the patient from vision loss.At the same t...In recent times,Internet of Things(IoT)and Deep Learning(DL)mod-els have revolutionized the diagnostic procedures of Diabetic Retinopathy(DR)in its early stages that can save the patient from vision loss.At the same time,the recent advancements made in Machine Learning(ML)and DL models help in developing Computer Aided Diagnosis(CAD)models for DR recognition and grading.In this background,the current research works designs and develops an IoT-enabled Effective Neutrosophic based Segmentation with Optimal Deep Belief Network(ODBN)model i.e.,NS-ODBN model for diagnosis of DR.The presented model involves Interval Neutrosophic Set(INS)technique to dis-tinguish the diseased areas in fundus image.In addition,three feature extraction techniques such as histogram features,texture features,and wavelet features are used in this study.Besides,Optimal Deep Belief Network(ODBN)model is utilized as a classification model for DR.ODBN model involves Shuffled Shepherd Optimization(SSO)algorithm to regulate the hyperparameters of DBN technique in an optimal manner.The utilization of SSO algorithm in DBN model helps in increasing the detection performance of the model significantly.The presented technique was experimentally evaluated using benchmark DR dataset and the results were validated under different evaluation metrics.The resultant values infer that the proposed INS-ODBN technique is a promising candidate than other existing techniques.展开更多
Corona Virus Disease 2019(COVID-19) has affected millions of people worldwide and caused more than6.3 million deaths(World Health Organization, June 2022). Increased attempts have been made to develop deep learning me...Corona Virus Disease 2019(COVID-19) has affected millions of people worldwide and caused more than6.3 million deaths(World Health Organization, June 2022). Increased attempts have been made to develop deep learning methods to diagnose COVID-19 based on computed tomography(CT) lung images. It is a challenge to reproduce and obtain the CT lung data, because it is not publicly available. This paper introduces a new generalized framework to segment and classify CT images and determine whether a patient is tested positive or negative for COVID-19 based on lung CT images. In this work, many different strategies are explored for the classification task.ResNet50 and VGG16 models are applied to classify CT lung images into COVID-19 positive or negative. Also,VGG16 and ReNet50 combined with U-Net, which is one of the most used architectures in deep learning for image segmentation, are employed to segment CT lung images before the classifying process to increase system performance. Moreover, the image size dependent normalization technique(ISDNT) and Wiener filter are utilized as the preprocessing techniques to enhance images and noise suppression. Additionally, transfer learning and data augmentation techniques are performed to solve the problem of COVID-19 CT lung images deficiency, therefore the over-fitting of deep models can be avoided. The proposed frameworks, which comprised of end-to-end, VGG16,ResNet50, and U-Net with VGG16 or ResNet50, are applied on the dataset that is sourced from COVID-19 lung CT images in Kaggle. The classification results show that using the preprocessed CT lung images as the input for U-Net hybrid with ResNet50 achieves the best performance. The proposed classification model achieves the 98.98%accuracy(ACC), 98.87% area under the ROC curve(AUC), 98.89% sensitivity(Se), 97.99 % precision(Pr), 97.88%F-score, and 1.8974-seconds computational time.展开更多
基金Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Science and ICT[NRF-2017R1E1A1A01077717].
文摘Many existing techniques to acquire dual-energy X-ray absorptiometry(DXA)images are unable to accurately distinguish between bone and soft tissue.For the most part,this failure stems from bone shape variability,noise and low contrast in DXA images,inconsistent X-ray beam penetration producing shadowing effects,and person-to-person variations.This work explores the feasibility of using state-of-the-art deep learning semantic segmentation models,fully convolutional networks(FCNs),SegNet,and U-Net to distinguish femur bone from soft tissue.We investigated the performance of deep learning algorithms with reference to some of our previously applied conventional image segmentation techniques(i.e.,a decision-tree-based method using a pixel label decision tree[PLDT]and another method using Otsu’s thresholding)for femur DXA images,and we measured accuracy based on the average Jaccard index,sensitivity,and specificity.Deep learning models using SegNet,U-Net,and an FCN achieved average segmentation accuracies of 95.8%,95.1%,and 97.6%,respectively,compared to PLDT(91.4%)and Otsu’s thresholding(72.6%).Thus we conclude that an FCN outperforms other deep learning and conventional techniques when segmenting femur bone from soft tissue in DXA images.Accurate femur segmentation improves bone mineral density computation,which in turn enhances the diagnosing of osteoporosis.
基金This research was financially supported in part by the Ministry of Trade,Industry and Energy(MOTIE)and Korea Institute for Advancement of Technology(KIAT)through the International Cooperative R&D program.(Project No.P0016038)in part by the MSIT(Ministry of Science and ICT),Korea,under the ITRC(Information Technology Research Center)support program(IITP-2021-2016-0-00312)supervised by the IITP(Institute for Information&communications Technology Planning&Evaluation).
文摘An automated system is proposed for the detection and classification of GI abnormalities.The proposed method operates under two pipeline procedures:(a)segmentation of the bleeding infection region and(b)classification of GI abnormalities by deep learning.The first bleeding region is segmented using a hybrid approach.The threshold is applied to each channel extracted from the original RGB image.Later,all channels are merged through mutual information and pixel-based techniques.As a result,the image is segmented.Texture and deep learning features are extracted in the proposed classification task.The transfer learning(TL)approach is used for the extraction of deep features.The Local Binary Pattern(LBP)method is used for texture features.Later,an entropy-based feature selection approach is implemented to select the best features of both deep learning and texture vectors.The selected optimal features are combined with a serial-based technique and the resulting vector is fed to the Ensemble Learning Classifier.The experimental process is evaluated on the basis of two datasets:Private and KVASIR.The accuracy achieved is 99.8 per cent for the private data set and 86.4 percent for the KVASIR data set.It can be confirmed that the proposed method is effective in detecting and classifying GI abnormalities and exceeds other methods of comparison.
基金supported by the Information Technology Industry Development Agency (ITIDA),Egypt (Project No.CFP181).
文摘Image segmentation is crucial for various research areas. Manycomputer vision applications depend on segmenting images to understandthe scene, such as autonomous driving, surveillance systems, robotics, andmedical imaging. With the recent advances in deep learning (DL) and itsconfounding results in image segmentation, more attention has been drawnto its use in medical image segmentation. This article introduces a surveyof the state-of-the-art deep convolution neural network (CNN) models andmechanisms utilized in image segmentation. First, segmentation models arecategorized based on their model architecture and primary working principle.Then, CNN categories are described, and various models are discussed withineach category. Compared with other existing surveys, several applicationswith multiple architectural adaptations are discussed within each category.A comparative summary is included to give the reader insights into utilizedarchitectures in different applications and datasets. This study focuses onmedical image segmentation applications, where the most widely used architecturesare illustrated, and other promising models are suggested that haveproven their success in different domains. Finally, the present work discussescurrent limitations and solutions along with future trends in the field.
基金Supported by the National Natural Science Foundation of China(12090020,12090025)Zhejiang Provin-cial Natural Science Foundation of China(LSD19H180005)。
文摘Automatic segmentation of the liver and hepatic lesions from abdominal 3D comput-ed tomography(CT)images is fundamental tasks in computer-assisted liver surgery planning.However,due to complex backgrounds,ambiguous boundaries,heterogeneous appearances and highly varied shapes of the liver,accurate liver segmentation and tumor detection are stil-1 challenging problems.To address these difficulties,we propose an automatic segmentation framework based on 3D U-net with dense connections and globally optimized refinement.First-ly,a deep U-net architecture with dense connections is trained to learn the probability map of the liver.Then the probability map goes into the following refinement step as the initial surface and prior shape.The segmentation of liver tumor is based on the similar network architecture with the help of segmentation results of liver.In order to reduce the infuence of the surrounding tissues with the similar intensity and texture behavior with the tumor region,during the training procedure,I x liverlabel is the input of the network for the segmentation of liver tumor.By do-ing this,the accuracy of segmentation can be improved.The proposed method is fully automatic without any user interaction.Both qualitative and quantitative results reveal that the pro-posed approach is efficient and accurate for liver volume estimation in clinical application.The high correlation between the automatic and manual references shows that the proposed method can be good enough to replace the time-consuming and non-reproducible manual segmentation method.
基金This research has been partially supported by National Science Foundation under grant IIS-1115417the National Natural Science Foundation of China under grant 61728205,61876217+1 种基金the“double first-class”international cooperation and development scientific research project of Changsha University of Science and Technology(No.2018IC25)the Science and Technology Development Project of Suzhou under grant SZS201609 and SYG201707.
文摘Accurate segmentation of CT images of liver tumors is an important adjunct for the liver diagnosis and treatment of liver diseases.In recent years,due to the great improvement of hard device,many deep learning based methods have been proposed for automatic liver segmentation.Among them,there are the plain neural network headed by FCN and the residual neural network headed by Resnet,both of which have many variations.They have achieved certain achievements in medical image segmentation.In this paper,we firstly select five representative structures,i.e.,FCN,U-Net,Segnet,Resnet and Densenet,to investigate their performance on liver segmentation.Since original Resnet and Densenet could not perform image segmentation directly,we make some adjustments for them to perform live segmentation.Our experimental results show that Densenet performs the best on liver segmentation,followed by Resnet.Both perform much better than Segnet,U-Net,and FCN.Among Segnet,U-Net,and FCN,U-Net performs the best,followed by Segnet.FCN performs the worst.
文摘This paper presents a novel computerized technique for the segmentation of nuclei in hematoxylin and eosin(H&E)stained histopathology images.The purpose of this study is to overcome the challenges faced in automated nuclei segmentation due to the diversity of nuclei structures that arise from differences in tissue types and staining protocols,as well as the segmentation of variable-sized and overlapping nuclei.To this extent,the approach proposed in this study uses an ensemble of the UNet architecture with various Convolutional Neural Networks(CNN)architectures as encoder backbones,along with stain normalization and test time augmentation,to improve segmentation accuracy.Additionally,this paper employs a Structure-Preserving Color Normalization(SPCN)technique as a preprocessing step for stain normalization.The proposed model was trained and tested on both single-organ and multi-organ datasets,yielding an F1 score of 84.11%,mean Intersection over Union(IoU)of 81.67%,dice score of 84.11%,accuracy of 92.58%and precision of 83.78%on the multi-organ dataset,and an F1 score of 87.04%,mean IoU of 86.66%,dice score of 87.04%,accuracy of 96.69%and precision of 87.57%on the single-organ dataset.These findings demonstrate that the proposed model ensemble coupled with the right pre-processing and post-processing techniques enhances nuclei segmentation capabilities.
基金The authors extend their appreciation to the Deputyship for Research and Innovation,Ministry of Education in Saudi Arabia for funding this research work through the project number(DRI−KSU−415).
文摘The accurate segmentation of retinal vessels is a challenging taskdue to the presence of various pathologies as well as the low-contrast ofthin vessels and non-uniform illumination. In recent years, encoder-decodernetworks have achieved outstanding performance in retinal vessel segmentation at the cost of high computational complexity. To address the aforementioned challenges and to reduce the computational complexity, we proposea lightweight convolutional neural network (CNN)-based encoder-decoderdeep learning model for accurate retinal vessels segmentation. The proposeddeep learning model consists of encoder-decoder architecture along withbottleneck layers that consist of depth-wise squeezing, followed by fullconvolution, and finally depth-wise stretching. The inspiration for the proposed model is taken from the recently developed Anam-Net model, whichwas tested on CT images for COVID-19 identification. For our lightweightmodel, we used a stack of two 3 × 3 convolution layers (without spatialpooling in between) instead of a single 3 × 3 convolution layer as proposedin Anam-Net to increase the receptive field and to reduce the trainableparameters. The proposed method includes fewer filters in all convolutionallayers than the original Anam-Net and does not have an increasing numberof filters for decreasing resolution. These modifications do not compromiseon the segmentation accuracy, but they do make the architecture significantlylighter in terms of the number of trainable parameters and computation time.The proposed architecture has comparatively fewer parameters (1.01M) thanAnam-Net (4.47M), U-Net (31.05M), SegNet (29.50M), and most of the otherrecent works. The proposed model does not require any problem-specificpre- or post-processing, nor does it rely on handcrafted features. In addition,the attribute of being efficient in terms of segmentation accuracy as well aslightweight makes the proposed method a suitable candidate to be used in thescreening platforms at the point of care. We evaluated our proposed modelon open-access datasets namely, DRIVE, STARE, and CHASE_DB. Theexperimental results show that the proposed model outperforms several stateof-the-art methods, such as U-Net and its variants, fully convolutional network (FCN), SegNet, CCNet, ResWNet, residual connection-based encoderdecoder network (RCED-Net), and scale-space approx. network (SSANet) in terms of {dice coefficient, sensitivity (SN), accuracy (ACC), and the areaunder the ROC curve (AUC)} with the scores of {0.8184, 0.8561, 0.9669, and0.9868} on the DRIVE dataset, the scores of {0.8233, 0.8581, 0.9726, and0.9901} on the STARE dataset, and the scores of {0.8138, 0.8604, 0.9752,and 0.9906} on the CHASE_DB dataset. Additionally, we perform crosstraining experiments on the DRIVE and STARE datasets. The result of thisexperiment indicates the generalization ability and robustness of the proposedmodel.
基金supported by the Simons Foundation,the National Natural Science Foundation of China(No.NSFC61405038)the Fujian provincial fund(No.2020J01453).
文摘Neurons can be abstractly represented as skeletons due to the filament nature of neurites.With the rapid development of imaging and image analysis techniques,an increasing amount of neuron skeleton data is being produced.In some scienti fic studies,it is necessary to dissect the axons and dendrites,which is typically done manually and is both tedious and time-consuming.To automate this process,we have developed a method that relies solely on neuronal skeletons using Geometric Deep Learning(GDL).We demonstrate the effectiveness of this method using pyramidal neurons in mammalian brains,and the results are promising for its application in neuroscience studies.
文摘Background:In medical image analysis,the diagnosis of skin lesions remains a challenging task.Skin lesion is a common type of skin cancer that exists worldwide.Dermoscopy is one of the latest technologies used for the diagnosis of skin cancer.Challenges:Many computerized methods have been introduced in the literature to classify skin cancers.However,challenges remain such as imbalanced datasets,low contrast lesions,and the extraction of irrelevant or redundant features.Proposed Work:In this study,a new technique is proposed based on the conventional and deep learning framework.The proposed framework consists of two major tasks:lesion segmentation and classification.In the lesion segmentation task,contrast is initially improved by the fusion of two filtering techniques and then performed a color transformation to color lesion area color discrimination.Subsequently,the best channel is selected and the lesion map is computed,which is further converted into a binary form using a thresholding function.In the lesion classification task,two pre-trained CNN models were modified and trained using transfer learning.Deep features were extracted from both models and fused using canonical correlation analysis.During the fusion process,a few redundant features were also added,lowering classification accuracy.A new technique called maximum entropy score-based selection(MESbS)is proposed as a solution to this issue.The features selected through this approach are fed into a cubic support vector machine(C-SVM)for the final classification.Results:The experimental process was conducted on two datasets:ISIC 2017 and HAM10000.The ISIC 2017 dataset was used for the lesion segmentation task,whereas the HAM10000 dataset was used for the classification task.The achieved accuracy for both datasets was 95.6% and 96.7%, respectively, which was higher thanthe existing techniques.
基金supported by the National Natural Science Foundation of China (61671397).
文摘In the shape analysis community,decomposing a 3D shape intomeaningful parts has become a topic of interest.3D model segmentation is largely used in tasks such as shape deformation,shape partial matching,skeleton extraction,shape correspondence,shape annotation and texture mapping.Numerous approaches have attempted to provide better segmentation solutions;however,the majority of the previous techniques used handcrafted features,which are usually focused on a particular attribute of 3Dobjects and so are difficult to generalize.In this paper,we propose a three-stage approach for using Multi-view recurrent neural network to automatically segment a 3D shape into visually meaningful sub-meshes.The first stage involves normalizing and scaling a 3D model to fit within the unit sphere and rendering the object into different views.Contrasting viewpoints,on the other hand,might not have been associated,and a 3D region could correlate into totally distinct outcomes depending on the viewpoint.To address this,we ran each view through(shared weights)CNN and Bolster block in order to create a probability boundary map.The Bolster block simulates the area relationships between different views,which helps to improve and refine the data.In stage two,the feature maps generated in the previous step are correlated using a Recurrent Neural network to obtain compatible fine detail responses for each view.Finally,a layer that is fully connected is used to return coherent edges,which are then back project to 3D objects to produce the final segmentation.Experiments on the Princeton Segmentation Benchmark dataset show that our proposed method is effective for mesh segmentation tasks.
基金supported by the Basque Government“Aids for health research projects”and the publication fees supported by the Basque Government Department of Education(eVIDA Certified Group IT905-16).
文摘As colon cancer is among the top causes of death, there is a growinginterest in developing improved techniques for the early detection of colonpolyps. Given the close relation between colon polyps and colon cancer,their detection helps avoid cancer cases. The increment in the availability ofcolorectal screening tests and the number of colonoscopies have increasedthe burden on the medical personnel. In this article, the application of deeplearning techniques for the detection and segmentation of colon polyps incolonoscopies is presented. Four techniques were implemented and evaluated:Mask-RCNN, PANet, Cascade R-CNN and Hybrid Task Cascade (HTC).These were trained and tested using CVC-Colon database, ETIS-LARIBPolyp, and a proprietary dataset. Three experiments were conducted to assessthe techniques performance: (1) Training and testing using each databaseindependently, (2) Mergingd the databases and testing on each database independently using a merged test set, and (3) Training on each dataset and testingon the merged test set. In our experiments, PANet architecture has the bestperformance in Polyp detection, and HTC was the most accurate to segmentthem. This approach allows us to employ Deep Learning techniques to assisthealthcare professionals in the medical diagnosis for colon cancer. It is anticipated that this approach can be part of a framework for a semi-automatedpolyp detection in colonoscopies.
文摘AIM: To explore a more accurate quantifying diagnosis method of diabetic macular edema(DME) by displaying detailed 3D morphometry beyond the gold-standard quantification indicator-central retinal thickness(CRT) and apply it in follow-up of DME patients.METHODS: Optical coherence tomography(OCT) scans of 229 eyes from 160 patients were collected.We manually annotated cystoid macular edema(CME), subretinal fluid(SRF) and fovea as ground truths.Deep convolution neural networks(DCNNs) were constructed including U-Net, sASPP, HRNetV2-W48, and HRNetV2-W48+Object-Contextual Representation(OCR) for fluid(CME+SRF) segmentation and fovea detection respectively, based on which the thickness maps of CME, SRF and retina were generated and divided by Early Treatment Diabetic Retinopathy Study(ETDRS) grid.RESULTS: In fluid segmentation, with the best DCNN constructed and loss function, the dice similarity coefficients(DSC) of segmentation reached 0.78(CME), 0.82(SRF), and 0.95(retina).In fovea detection, the average deviation between the predicted fovea and the ground truth reached 145.7±117.8 μm.The generated macular edema thickness maps are able to discover center-involved DME by intuitive morphometry and fluid volume, which is ignored by the traditional definition of CRT>250 μm.Thickness maps could also help to discover fluid above or below the fovea center ignored or underestimated by a single OCT B-scan.CONCLUSION: Compared to the traditional unidimensional indicator-CRT, 3D macular edema thickness maps are able to display more intuitive morphometry and detailed statistics of DME, supporting more accurate diagnoses and follow-up of DME patients.
基金Scientific Research Project of the Education Department of Hunan Province(20C1435)Open Fund Project for Computer Science and Technology of Hunan University of Chinese Medicine(2018JK05).
文摘Objective To propose two novel methods based on deep learning for computer-aided tongue diagnosis,including tongue image segmentation and tongue color classification,improving their diagnostic accuracy.Methods LabelMe was used to label the tongue mask and Snake model to optimize the labeling results.A new dataset was constructed for tongue image segmentation.Tongue color was marked to build a classified dataset for network training.In this research,the Inception+Atrous Spatial Pyramid Pooling(ASPP)+UNet(IAUNet)method was proposed for tongue image segmentation,based on the existing UNet,Inception,and atrous convolution.Moreover,the Tongue Color Classification Net(TCCNet)was constructed with reference to ResNet,Inception,and Triple-Loss.Several important measurement indexes were selected to evaluate and compare the effects of the novel and existing methods for tongue segmentation and tongue color classification.IAUNet was compared with existing mainstream methods such as UNet and DeepLabV3+for tongue segmentation.TCCNet for tongue color classification was compared with VGG16 and GoogLeNet.Results IAUNet can accurately segment the tongue from original images.The results showed that the Mean Intersection over Union(MIoU)of IAUNet reached 96.30%,and its Mean Pixel Accuracy(MPA),mean Average Precision(mAP),F1-Score,G-Score,and Area Under Curve(AUC)reached 97.86%,99.18%,96.71%,96.82%,and 99.71%,respectively,suggesting IAUNet produced better segmentation than other methods,with fewer parameters.Triplet-Loss was applied in the proposed TCCNet to separate different embedded colors.The experiment yielded ideal results,with F1-Score and mAP of the TCCNet reached 88.86% and 93.49%,respectively.Conclusion IAUNet based on deep learning for tongue segmentation is better than traditional ones.IAUNet can not only produce ideal tongue segmentation,but have better effects than those of PSPNet,SegNet,UNet,and DeepLabV3+,the traditional networks.As for tongue color classification,the proposed network,TCCNet,had better F1-Score and mAP values as compared with other neural networks such as VGG16 and GoogLeNet.
基金supported by the Major science and technology project of Hainan Province(Grant No.ZDKJ2020012)National Natural Science Foundation of China(Grant No.62162024 and 62162022)+1 种基金Key Projects in Hainan Province(Grant ZDYF2021GXJS003 and Grant ZDYF2020040)Graduate Innovation Project(Grant No.Qhys2021-187).
文摘Image semantic segmentation is an important branch of computer vision of a wide variety of practical applications such as medical image analysis,autonomous driving,virtual or augmented reality,etc.In recent years,due to the remarkable performance of transformer and multilayer perceptron(MLP)in computer vision,which is equivalent to convolutional neural network(CNN),there has been a substantial amount of image semantic segmentation works aimed at developing different types of deep learning architecture.This survey aims to provide a comprehensive overview of deep learning methods in the field of general image semantic segmentation.Firstly,the commonly used image segmentation datasets are listed.Next,extensive pioneering works are deeply studied from multiple perspectives(e.g.,network structures,feature fusion methods,attention mechanisms),and are divided into four categories according to different network architectures:CNN-based architectures,transformer-based architectures,MLP-based architectures,and others.Furthermore,this paper presents some common evaluation metrics and compares the respective advantages and limitations of popular techniques both in terms of architectural design and their experimental value on the most widely used datasets.Finally,possible future research directions and challenges are discussed for the reference of other researchers.
文摘3D object recognition is a challenging task for intelligent and robot systems in industrial and home indoor environments.It is critical for such systems to recognize and segment the 3D object instances that they encounter on a frequent basis.The computer vision,graphics,and machine learning fields have all given it a lot of attention.Traditionally,3D segmentation was done with hand-crafted features and designed approaches that didn’t achieve acceptable performance and couldn’t be generalized to large-scale data.Deep learning approaches have lately become the preferred method for 3D segmentation challenges by their great success in 2D computer vision.However,the task of instance segmentation is currently less explored.In this paper,we propose a novel approach for efficient 3D instance segmentation using red green blue and depth(RGB-D)data based on deep learning.The 2D region based convolutional neural networks(Mask R-CNN)deep learning model with point based rending module is adapted to integrate with depth information to recognize and segment 3D instances of objects.In order to generate 3D point cloud coordinates(x,y,z),segmented 2D pixels(u,v)of recognized object regions in the RGB image are merged into(u,v)points of the depth image.Moreover,we conducted an experiment and analysis to compare our proposed method from various points of view and distances.The experimentation shows the proposed 3D object recognition and instance segmentation are sufficiently beneficial to support object handling in robotic and intelligent systems.
文摘Coronavirus has infected more than 753 million people,ranging in severity from one person to another,where more than six million infected people died worldwide.Computer-aided diagnostic(CAD)with artificial intelligence(AI)showed outstanding performance in effectively diagnosing this virus in real-time.Computed tomography is a complementary diagnostic tool to clarify the damage of COVID-19 in the lungs even before symptoms appear in patients.This paper conducts a systematic literature review of deep learning methods for classifying the segmentation of COVID-19 infection in the lungs.We used the methodology of systematic reviews and meta-analyses(PRISMA)flow method.This research aims to systematically analyze the supervised deep learning methods,open resource datasets,data augmentation methods,and loss functions used for various segment shapes of COVID-19 infection from computerized tomography(CT)chest images.We have selected 56 primary studies relevant to the topic of the paper.We have compared different aspects of the algorithms used to segment infected areas in the CT images.Limitations to deep learning in the segmentation of infected areas still need to be developed to predict smaller regions of infection at the beginning of their appearance.
文摘<div style="text-align:justify;"> The morbidity and mortality of the fetus is related closely with the neonatal respiratory morbidity, which was caused by the immaturity of the fetal lung primarily. The amniocentesis has been used in clinics to evaluate the maturity of the fetal lung, which is invasive, expensive and time-consuming. Ultrasonography has been developed to examine the fetal lung quantitatively in the past decades as a non-invasive method. However, the contour of the fetal lung required by existing studies was delineated in manual. An automated segmentation approach could not only improve the objectiveness of those studies, but also offer a quantitative way to monitor the development of the fetal lung in terms of morphological parameters based on the segmentation. In view of this, we proposed a deep learning model for automated fetal lung segmentation and measurement. The model was constructed based on the U-Net. It was trained by 3500 data sets augmented from 250 ultrasound images with both the fetal lung and heart manually delineated, and then tested on 50 ultrasound data sets. With the proposed method, the fetal lung and cardiac area were automatically segmented with the accuracy, average IoU, sensitivity and precision being 0.98, 0.79, 0.881 and 0.886, respectively. </div>
基金This work was supported by the National Research Foundation of Korea-Grant funded by the Korean Government(Ministry of Science and ICT)-NRF-2020R1A2B5B02002478).There was no additional external funding received for this study.
文摘Early detection of the Covid-19 disease is essential due to its higher rate of infection affecting tens of millions of people,and its high number of deaths also by 7%.For that purpose,a proposed model of several stages was developed.The first stage is optimizing the images using dynamic adaptive histogram equalization,performing a semantic segmentation using DeepLabv3Plus,then augmenting the data by flipping it horizontally,rotating it,then flipping it vertically.The second stage builds a custom convolutional neural network model using several pre-trained ImageNet.Finally,the model compares the pre-trained data to the new output,while repeatedly trimming the best-performing models to reduce complexity and improve memory efficiency.Several experiments were done using different techniques and parameters.Accordingly,the proposed model achieved an average accuracy of 99.6%and an area under the curve of 0.996 in the Covid-19 detection.This paper will discuss how to train a customized intelligent convolutional neural network using various parameters on a set of chest X-rays with an accuracy of 99.6%.
文摘In recent times,Internet of Things(IoT)and Deep Learning(DL)mod-els have revolutionized the diagnostic procedures of Diabetic Retinopathy(DR)in its early stages that can save the patient from vision loss.At the same time,the recent advancements made in Machine Learning(ML)and DL models help in developing Computer Aided Diagnosis(CAD)models for DR recognition and grading.In this background,the current research works designs and develops an IoT-enabled Effective Neutrosophic based Segmentation with Optimal Deep Belief Network(ODBN)model i.e.,NS-ODBN model for diagnosis of DR.The presented model involves Interval Neutrosophic Set(INS)technique to dis-tinguish the diseased areas in fundus image.In addition,three feature extraction techniques such as histogram features,texture features,and wavelet features are used in this study.Besides,Optimal Deep Belief Network(ODBN)model is utilized as a classification model for DR.ODBN model involves Shuffled Shepherd Optimization(SSO)algorithm to regulate the hyperparameters of DBN technique in an optimal manner.The utilization of SSO algorithm in DBN model helps in increasing the detection performance of the model significantly.The presented technique was experimentally evaluated using benchmark DR dataset and the results were validated under different evaluation metrics.The resultant values infer that the proposed INS-ODBN technique is a promising candidate than other existing techniques.
文摘Corona Virus Disease 2019(COVID-19) has affected millions of people worldwide and caused more than6.3 million deaths(World Health Organization, June 2022). Increased attempts have been made to develop deep learning methods to diagnose COVID-19 based on computed tomography(CT) lung images. It is a challenge to reproduce and obtain the CT lung data, because it is not publicly available. This paper introduces a new generalized framework to segment and classify CT images and determine whether a patient is tested positive or negative for COVID-19 based on lung CT images. In this work, many different strategies are explored for the classification task.ResNet50 and VGG16 models are applied to classify CT lung images into COVID-19 positive or negative. Also,VGG16 and ReNet50 combined with U-Net, which is one of the most used architectures in deep learning for image segmentation, are employed to segment CT lung images before the classifying process to increase system performance. Moreover, the image size dependent normalization technique(ISDNT) and Wiener filter are utilized as the preprocessing techniques to enhance images and noise suppression. Additionally, transfer learning and data augmentation techniques are performed to solve the problem of COVID-19 CT lung images deficiency, therefore the over-fitting of deep models can be avoided. The proposed frameworks, which comprised of end-to-end, VGG16,ResNet50, and U-Net with VGG16 or ResNet50, are applied on the dataset that is sourced from COVID-19 lung CT images in Kaggle. The classification results show that using the preprocessed CT lung images as the input for U-Net hybrid with ResNet50 achieves the best performance. The proposed classification model achieves the 98.98%accuracy(ACC), 98.87% area under the ROC curve(AUC), 98.89% sensitivity(Se), 97.99 % precision(Pr), 97.88%F-score, and 1.8974-seconds computational time.