In this paper, we propose a depth image generation method by stereo matching on super-pixel (SP) basis. In the proposed method, block matching is performed only at the center of the SP, and the obtained disparity is a...In this paper, we propose a depth image generation method by stereo matching on super-pixel (SP) basis. In the proposed method, block matching is performed only at the center of the SP, and the obtained disparity is applied to all pixels of the SP. Next, in order to improve the disparity, a new SP-based cost filter is introduced. This filter multiplies the matching cost of the surrounding SP by a weight based on reliability and similarity and sums the weighted costs of neighbors. In addition, we propose two new error checking methods. One-way check uses only a unidirectional disparity estimation with a small amount of calculation to detect errors. Cross recovery uses cross checking and error recovery to repair lacks of objects that are problematic with SP-based matching. As a result of the experiment, the execution time of the proposed method using the one-way check was about 1/100 of the full search, and the accuracy was almost equivalent. The accuracy using cross recovery exceeded the full search, and the execution time was about 1/60. Speeding up while maintaining accuracy increases the application range of depth images.展开更多
Conferring to the American Association of Neurological Surgeons(AANS)survey,85%to 99%of people are affected by spinal cord tumors.The symptoms are varied depending on the tumor’s location and size.Up-to-the-min-ute,b...Conferring to the American Association of Neurological Surgeons(AANS)survey,85%to 99%of people are affected by spinal cord tumors.The symptoms are varied depending on the tumor’s location and size.Up-to-the-min-ute,back pain is one of the essential symptoms,but it does not have a specific symptom to recognize at the earlier stage.Numerous significant research studies have been conducted to improve spine tumor recognition accuracy.Nevertheless,the traditional systems are consuming high time to extract the specific region and features.Improper identification of the tumor region affects the predictive tumor rate and causes the maximum error-classification problem.Consequently,in this work,Super-pixel analytics Numerical Characteristics Disintegration Model(SNCDM)is used to segment the tumor affected region.Estimating the super-pix-els of the affected region by this method reduces the variance between the iden-tified pixels.Further,the super-pixels are selected according to the optimized convolution network that effectively extracts the vertebral super-pixels features.Derived super-pixels improve the network learning and training process,which minimizes the maximum error classification problem also the efficiency of the system was evaluated using experimental results and analysis.展开更多
Digital holography has high potentials for future 3D imaging and display technology.We present a method for a dynamic full-color digital holographic 3D display on single digital micro-mirror device(DMD)with full-color...Digital holography has high potentials for future 3D imaging and display technology.We present a method for a dynamic full-color digital holographic 3D display on single digital micro-mirror device(DMD)with full-color,high-speed and high-fidelity characteristics.We combine the square regions of adjacent micro-mirrors into super-pixels that can modulate amplitude and phase independently.Gray images are achieved by amplitude modulation and precise positioning of each color is achieved by phase modulation.The proposed method realizes a full-color imaging based on the three primary colors and achieves measured structural similarity of more than 88%and color similarity of more than 98%,while retaining the high switch speed of 9 kHz,thus achieving dynamic full-color 3D display on charge-coupled device(CCD).展开更多
Super-pixel algorithms based on convolutional neural networks with fuzzy C-means clustering are widely used for high-spatial-resolution remote sensing images segmentation.However,this model requires the number of clus...Super-pixel algorithms based on convolutional neural networks with fuzzy C-means clustering are widely used for high-spatial-resolution remote sensing images segmentation.However,this model requires the number of clusters to be set manually,resulting in a low automation degree due to the complexity of the iterative clustering process.To address this problem,a segmentation method based on a self-learning super-pixel network(SLSP-Net)and modified automatic fuzzy clustering(MAFC)is proposed.SLSP-Net performs feature extraction,non-iterative clustering,and gradient reconstruction.A lightweight feature embedder is adopted for feature extraction,thus expanding the receiving range and generating multi-scale features.Automatic matching is used for non-iterative clustering,and the overfitting of the network model is overcome by adaptively adjusting the gradient weight parameters,providing a better irregular super-pixel neighborhood structure.An optimized density peak algorithm is adopted for MAFC.Based on the obtained super-pixel image,this maximizes the robust decision-making interval,which enhances the automation of regional clustering.Finally,prior entropy fuzzy C-means clustering is applied to optimize the robust decision-making and obtain the final segmentation result.Experimental results show that the proposed model offers reduced experimental complexity and achieves good performance,realizing not only automatic image segmentation,but also good segmentation results.展开更多
Superpixel as an important pre-processing technique has been successfully used in many vision applications. In this paper, we proposed a region merging method to improve superpixel segmentation accuracy with low compu...Superpixel as an important pre-processing technique has been successfully used in many vision applications. In this paper, we proposed a region merging method to improve superpixel segmentation accuracy with low computational cost. We first segmented the image into many accurate small regions, and then progressively agglomerated them until the desired region number was reached. The region merging weight was derived from a novel energy function, which encourages the superpixel with color consistency and similar size. Experimental results on the Berkeley BSDS500 data set showed that our region merging method can significantly improve the accuracy of superpixel segmentation. Moreover, the region merging method only need 50ms to process a 481x321 image on a single Intel i3 CPU at 2.5 GHz.展开更多
文摘In this paper, we propose a depth image generation method by stereo matching on super-pixel (SP) basis. In the proposed method, block matching is performed only at the center of the SP, and the obtained disparity is applied to all pixels of the SP. Next, in order to improve the disparity, a new SP-based cost filter is introduced. This filter multiplies the matching cost of the surrounding SP by a weight based on reliability and similarity and sums the weighted costs of neighbors. In addition, we propose two new error checking methods. One-way check uses only a unidirectional disparity estimation with a small amount of calculation to detect errors. Cross recovery uses cross checking and error recovery to repair lacks of objects that are problematic with SP-based matching. As a result of the experiment, the execution time of the proposed method using the one-way check was about 1/100 of the full search, and the accuracy was almost equivalent. The accuracy using cross recovery exceeded the full search, and the execution time was about 1/60. Speeding up while maintaining accuracy increases the application range of depth images.
文摘Conferring to the American Association of Neurological Surgeons(AANS)survey,85%to 99%of people are affected by spinal cord tumors.The symptoms are varied depending on the tumor’s location and size.Up-to-the-min-ute,back pain is one of the essential symptoms,but it does not have a specific symptom to recognize at the earlier stage.Numerous significant research studies have been conducted to improve spine tumor recognition accuracy.Nevertheless,the traditional systems are consuming high time to extract the specific region and features.Improper identification of the tumor region affects the predictive tumor rate and causes the maximum error-classification problem.Consequently,in this work,Super-pixel analytics Numerical Characteristics Disintegration Model(SNCDM)is used to segment the tumor affected region.Estimating the super-pix-els of the affected region by this method reduces the variance between the iden-tified pixels.Further,the super-pixels are selected according to the optimized convolution network that effectively extracts the vertebral super-pixels features.Derived super-pixels improve the network learning and training process,which minimizes the maximum error classification problem also the efficiency of the system was evaluated using experimental results and analysis.
基金This work was supported by National Natural Science Foundation of China(91850202,61775085,11774256)Natural Science Foundation of Guangdong Province(2016A030312010,2020A1515010958)Science and Technology Innovation Commission of Shenzhen(KQTD2017033011044403,ZDSYS201703031605029).
文摘Digital holography has high potentials for future 3D imaging and display technology.We present a method for a dynamic full-color digital holographic 3D display on single digital micro-mirror device(DMD)with full-color,high-speed and high-fidelity characteristics.We combine the square regions of adjacent micro-mirrors into super-pixels that can modulate amplitude and phase independently.Gray images are achieved by amplitude modulation and precise positioning of each color is achieved by phase modulation.The proposed method realizes a full-color imaging based on the three primary colors and achieves measured structural similarity of more than 88%and color similarity of more than 98%,while retaining the high switch speed of 9 kHz,thus achieving dynamic full-color 3D display on charge-coupled device(CCD).
基金funded by Scientific and Technological Innovation Team of Universities in Henan Province,grant number 22IRTSTHN008Innovative Research Team(in Philosophy and Social Science)in University of Henan Province grant number 2022-CXTD-02the National Natural Science Foundation of China,grant number 41371524.
文摘Super-pixel algorithms based on convolutional neural networks with fuzzy C-means clustering are widely used for high-spatial-resolution remote sensing images segmentation.However,this model requires the number of clusters to be set manually,resulting in a low automation degree due to the complexity of the iterative clustering process.To address this problem,a segmentation method based on a self-learning super-pixel network(SLSP-Net)and modified automatic fuzzy clustering(MAFC)is proposed.SLSP-Net performs feature extraction,non-iterative clustering,and gradient reconstruction.A lightweight feature embedder is adopted for feature extraction,thus expanding the receiving range and generating multi-scale features.Automatic matching is used for non-iterative clustering,and the overfitting of the network model is overcome by adaptively adjusting the gradient weight parameters,providing a better irregular super-pixel neighborhood structure.An optimized density peak algorithm is adopted for MAFC.Based on the obtained super-pixel image,this maximizes the robust decision-making interval,which enhances the automation of regional clustering.Finally,prior entropy fuzzy C-means clustering is applied to optimize the robust decision-making and obtain the final segmentation result.Experimental results show that the proposed model offers reduced experimental complexity and achieves good performance,realizing not only automatic image segmentation,but also good segmentation results.
文摘Superpixel as an important pre-processing technique has been successfully used in many vision applications. In this paper, we proposed a region merging method to improve superpixel segmentation accuracy with low computational cost. We first segmented the image into many accurate small regions, and then progressively agglomerated them until the desired region number was reached. The region merging weight was derived from a novel energy function, which encourages the superpixel with color consistency and similar size. Experimental results on the Berkeley BSDS500 data set showed that our region merging method can significantly improve the accuracy of superpixel segmentation. Moreover, the region merging method only need 50ms to process a 481x321 image on a single Intel i3 CPU at 2.5 GHz.