期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Super-Tough and Environmentally Stable Aramid Nanofiber@MXene Coaxial Fibers with Outstanding Electromagnetic Interference Shielding Efficiency 被引量:6
1
作者 Liu-Xin Liu Wei Chen +5 位作者 Hao-Bin Zhang Lvxuan Ye Zhenguo Wang Yu Zhang Peng Min Zhong-Zhen Yu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2022年第7期72-85,共14页
Although electrically conductive and hydrophilic MXene sheets are promising for multifunctional fibers and electronic textiles,it is still a challenge to simultaneously enhance both conductivity and mechanical propert... Although electrically conductive and hydrophilic MXene sheets are promising for multifunctional fibers and electronic textiles,it is still a challenge to simultaneously enhance both conductivity and mechanical properties of MXene fibers because of the high rigidity of MXene sheets and insufficient inter-sheet interactions.Herein,we demonstrate a core-shell wet-spinning methodology for fabricating highly conductive,super-tough,ultra-strong,and environmentally stable Ti_(3)C_(2)T_(x) MXene-based core-shell fibers with conductive MXene cores and tough aramid nanofiber(ANF)shells.The highly orientated and low-defect structure endows the ANF@MXene core-shell fiber with supertoughness of~48.1 MJ m^(-3),high strength of~502.9 MPa,and high conductivity of~3.0×10^(5)S m^(-1).The super-tough and conductive ANF@MXene fibers can be woven into textiles,exhibiting an excellent electromagnetic interference(EMI)shielding efficiency of 83.4 dB at a small thickness of 213μm.Importantly,the protection of the ANF shells provides the fibers with satisfactory cyclic stability under dynamic stretching and bending,and excellent resistance to acid,alkali,seawater,cryogenic and high temperatures,and fire.The oxidation resistance of the fibers is demonstrated by their wellmaintained EMI shielding performances.The multifunctional core-shell fibers would be highly promising in the fields of EMI shielding textiles,wearable electronics and aerospace. 展开更多
关键词 Core-shell fibers MXene sheets Electromagnetic interference shielding Aramid nanofibers super-toughness
下载PDF
Stretchable alkaline quasi-solid-state electrolytes created by super-tough, fatigue-resistant and alkali-resistant multi-bond network hydrogels
2
作者 Hao Xu Yujun Liu Xu-Ming Xie 《Chinese Chemical Letters》 SCIE CAS CSCD 2023年第4期275-278,共4页
Hydrogel-based quasi-solid-state electrolytes(Q-SSEs) swollen with electrolyte solutions are important components in stretchable supercapacitors and other wearable devices. This work fabricates a supertough, fatigue-r... Hydrogel-based quasi-solid-state electrolytes(Q-SSEs) swollen with electrolyte solutions are important components in stretchable supercapacitors and other wearable devices. This work fabricates a supertough, fatigue-resistant, and alkali-resistant multi-bond network(MBN) hydrogel aiming to be an alkaline Q-SSE. To synthesize the hydrogel, a 2-ureido-4[1H]-pyrimidone(UPy) motif is introduced into a poly(acrylic acid) polymer chain. The obtained MBN hydrogels with 75 wt% water content exhibit tensile strength as high as 2.47 MPa, which is enabled by the large energy dissipation ability originated from the dissociation of UPy dimers due to their high bond association energy. Owing to the high dimerization constant of UPy motifs, the dissociated UPy motifs are able to partially re-associate soon after being released from external forces, resulting in excellent fatigue-resistance. More importantly, the MBN hydrogels exhibit excellent alkali-resistance ability. The UPy Gel-10 swollen with 1 mol/L KOH display a tensile strength as high as ~1.0 MPa with elongation at break of ~550%. At the same time, they show ionic conductivity of ~17 m S/cm, which do not decline even when the hydrogels are stretched to 500% strain.The excellent mechanical property and ionic conductivity of the present hydrogels demonstrate potential application as a stretchable alkaline Q-SSE. 展开更多
关键词 Alkaline quasi-solid-state electrolyte super-tough hydrogel Fatigue resistance Alkali resistance Multi-bond network
原文传递
Creating super-tough and strong PA6/ABS blends using multi-phase compatibilizers 被引量:4
3
作者 Xianwei Sui Xu-Ming Xie 《Chinese Chemical Letters》 SCIE CAS CSCD 2019年第1期149-152,共4页
Polyamide/acrylonitrile-butadiene-styrene copolymer(PA/ABS) blends have drawn considerable attention from both academia and industry for their important applications in automotive and electronic areas. Due to poor mis... Polyamide/acrylonitrile-butadiene-styrene copolymer(PA/ABS) blends have drawn considerable attention from both academia and industry for their important applications in automotive and electronic areas. Due to poor miscibility of PA and ABS, developing an effective compatibilization strategy has been an urgent challenge to achieve prominent mechanical properties. In this study, we create a set of mechanically enhanced PA6/ABS blends using two multi-monomer melt-grafted compatibilizers, SEBSg-(MAH-co-St) and ABS-g-(MAH-co-St). The dispersed domain size is significantly decreased and meanwhile the unique "soft shell-encapsulating-hard core" structures form in the presence of compatibilizers. The optimum mechanical performances manifest an increase of 36% in tensile strength and an increase of 1300% in impact strength, compared with the neat PA6/ABS binary blend. 展开更多
关键词 MELT BLENDING MULTI-PHASE COMPATIBILIZER Morphology Tensile properties super-tough
原文传递
Super-tough and rapidly self-recoverable multi-bond network hydrogels facilitated by 2-ureido-4[1H]-pyrimidone dimers 被引量:1
4
作者 Hao Xu Xu-Ming Xie 《Chinese Chemical Letters》 SCIE CAS CSCD 2021年第1期521-524,共4页
Multi-bond network(MBN) hydrogels contain hierarchical dynamic bonds with different bond association energy as energy dissipation units,enabling super-tough mechanical properties.In this work,we copolymerize a protona... Multi-bond network(MBN) hydrogels contain hierarchical dynamic bonds with different bond association energy as energy dissipation units,enabling super-tough mechanical properties.In this work,we copolymerize a protonated 2-ureido-4[1 H]-pyrimidone(UPy)-contained monomer with acrylic acid in HCl solution.After removing excess HCl,UPy motifs are deprotonated and from dimers,thus generating an UPy-contained MBN hydrogel.The obtained MBN hydrogels(75 wt% watercontent) exhibit super-tough mechanical properties(0.39 MPa to 2.51 MPa tensile strength),with tremendous amount of energy(1.68 MJ/m^(3) to 11.1 MJ/m^(3)) dissipated by the dissociation of UPy dimers.The introduction of ionic bonds can further improve the mechanical properties.Moreover,owing to their dynamic nature,both UPy dimers and ionic bonds can re-associate after being dissociated,resulting in excellent self-recovery ability(around 90% recovery efficiency within only 1 h).The excellent self-recovery ability mainly originates from the re-association of UPy dimers based on the high dimerization constant of UPy motifs. 展开更多
关键词 Multi-bond network Quadruple hydrogen bonding SELF-RECOVERY super-tough hydrogel 2-Ureido-4[1H]-pyrimidone dimer
原文传递
High Performance Polylactide Toughened by Supertough Polyester Thermoplastic Elastomers:Properties and Mechanism
5
作者 FENG Songyang ZHAO Wuchao +1 位作者 HE Jianghua ZHANG Yuetao 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2023年第5期750-756,共7页
It is a challenge to develop a biodegradable toughener to toughen polylactic acid(PLA)with both high strength and high toughness,since toughness and strength are mutually exclusive.Here,a series of supertough polyeste... It is a challenge to develop a biodegradable toughener to toughen polylactic acid(PLA)with both high strength and high toughness,since toughness and strength are mutually exclusive.Here,a series of supertough polyester thermoplastic elastomers(TPEs),poly(L/D-lactide)-b-poly(ε-caprolactone-co-δ-valerolactone)-b-poly(L/D-lactide)s(PLLA-PCVL-PLLA,L-TPEs or PDLA-PCVL-PDLA,D-TPEs),were prepared and blended with a PLLA matrix to toughen PLLA.The mechanical properties of PLLA could be regulated in a wide range by changing blending ratios and TPE structures.For PLLA blends toughened by L-TPEs,the highest elongation at break is up to 425%with the tensile strength of 33.1 MPa and the toughness of 104 MJ/m3.By the stereocomplex crystallization of PLA(sc-PLA),the tensile strength of the PLLA/D-TPE blends further increased to 41.8 MPa with a similar elongation at break(418%)and the toughness up to 128 MJ/m3.The detailed characterizations revealed a toughening mechanism:(I)the added soft segments increased the ductility of the PLLA matrix,(II)the PLLA segments of L-TPEs increased the compatibility between TPEs and PLLA matrix,and(III)the formation of sc-PLA between the PDLA segments in D-TPE and PLLA provided higher tensile strength by enhancing the strength of the crystal skeleton.The toughened PLA using TPEs can maintain original non-toxic and degradable properties,and be applied potentially in surgical sutures,and 3D-printed scaffolds. 展开更多
关键词 super-tough polyester elastomer Poly-L-lactic acid toughening Biodegradable polymer Stereocomplex crystallization
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部