We present observations of a duskside shock aurora occurred on 21 April 2001 by the SuperDARN radar at Syowa Station and the all-sky camera at Zhongshan Station (ZHS) in Antarctica when the radar was operated in fas...We present observations of a duskside shock aurora occurred on 21 April 2001 by the SuperDARN radar at Syowa Station and the all-sky camera at Zhongshan Station (ZHS) in Antarctica when the radar was operated in fast-scan mode covering the ZHS region. With the two independent data sets, we examine ionospheric plasma convection and aurora arising from a sudden impulse (SI) event associated with an interplanetary shock. During the transient shock compression, the aurora was quiescent without any optical emission at the preliminary impulse of the SI. About 7 min later, a new thin auroral arc with brighter emissions and a lifetime of -14 rain expanded westward from the region above ZHS during the main impulse of the SI. SuperDARN radar line-of-sight measurements showed periodical oscillation in the flow direction with ultra-low-frequency waves having a period of -8 min during the shock compression. We suggest that downward field-aligned current during the preliminary impulse stage of the SI was the main driver of the first plasma flow reversal, and the subsequent new discrete auroral arc may be associated with field-aligned acceleration in the region of the main impulse related upward field-aligned currents. The ground magnetometer observations suggest that the oscillation of the ionospheric convection on the duskside was associated with field line resonance activity.展开更多
Zhongshan HF radar, as one component of SuperDARN, has been established and in operation since April, 2010. Using data from the first two years of its operation, this paper investigates the radar's performance, the d...Zhongshan HF radar, as one component of SuperDARN, has been established and in operation since April, 2010. Using data from the first two years of its operation, this paper investigates the radar's performance, the diurnal and seasonal variations o1 ionospheric echoes, and their dependence on geomagnetic activity. Statistical studies show that the occurrence of echoes in different beams varies at different frequencies, which arises from the direction of the beam and the area over which the beam can achieve the orthogonality condition between the wave vector and the Earth's magnetic field. The diurnal variation is obvious with double peak structures both in the occurrence rate and average power at 04-08 UT and 16-17 UT. The line-of-sight velocities are mainly positive on the dayside and negative on the nightside for Beam 0, which is the opposite of the trend for Beam 15. The spec- tral widths on the dayside are often higher than those on the nightside owing to the high energy particle precipitation in the cusp region. The seasonal variations are more obvious for those beams with larger numbers. The occurrence, the average power, the line-of-sight velocity, and the spectral widths are generally larger in the winter months than in the summer months. The influence of geomagnetic activity on radar echoes is significant. The peak echo occurrence appears on the dayside during geomagnetically quiet times, and shifts toward the nightside and exhibits an obvious decrease with increasing Kp. With increasing geomagnetic activity, the line-of-sight velocities increase, whereas the spectral widths decrease. The frequency dependence is investigated and it is found that in the operating frequency bands in 2010, 9-10 MHz is the most appropriate band for the SuperDARN Zhongshan radar.展开更多
We report on the characteristics of nighttime medium-scale traveling ionospheric disturbances (MSTIDs) propagating northward observed with the SuperDARN Hokkaido HF radar, which has a field of view to the north of J...We report on the characteristics of nighttime medium-scale traveling ionospheric disturbances (MSTIDs) propagating northward observed with the SuperDARN Hokkaido HF radar, which has a field of view to the north of Japan, and occasionally with the GNSS Earth Observation NETwork (GEONET), which provides total electron content (TEC) data over Japan. From statis- tical analysis of MSTIDs observed with the Hokkaido radar during nighttime (1700-0700 LT) from January 2007 to July 2009, we find that these MSTIDs traveling northward, although rare in comparison with those traveling southwestward, have a relatively high occurrence rate after sunset and around midnight in May and August, which is partly consistent with the occurrence rate of MSTIDs over Japan observed with GEONET in 2002, when the MSTID event database is available. We also use the data from simultaneous observation of nightside MSTIDs by the Hokkaido radar and GEONET to find that when the HF radar observed northward-propagating MSTIDs, GEONET did not always observe such MSTIDs with the same propagation direction. Judging from this result and considering the HF radar field of view located to the north of the GEONET coverage area, we speculate that some physical parameters of the ionosphere/thermosphere over Japan differ from those to the north of Japan, which may result in the inconsistency of MSTID propagation direction. The present results provide new knowledge of MSTIDs propagating northward using the Hokkaido radar, whose field of view was not covered by GEONET.展开更多
It is well known that many types of ionospheric disturbances occur during solar flare events. The sudden increase in total electron content (SITEC) has been studied for several decades, but total electron content (...It is well known that many types of ionospheric disturbances occur during solar flare events. The sudden increase in total electron content (SITEC) has been studied for several decades, but total electron content (TEC) data do not provide information on the altitudinal distribution of electron density changes. Previous studies used HF Doppler system data to investigate the contributions of the D-region and F-region ionospheric electron density changes by examining the HF radio wave frequency dependence on the Doppler shift values. In this study we examined the dependence of the elevation angle of the Doppler shift of ground scatter echoes using the SuperDARN Hokkaido radar. We analyzed solar flare events from Dec 2006 to Mar 2012. A sudden fade-out of echoes was observed in almost all the events we analyzed, which was the result of the radio absorption associated with a significant increase in electron density within the D-region ionosphere. In addition, we discovered positive Doppler shifts just before the sudden fade-out of echoes. The Doppler shift is negatively correlated with the elevation angle of received radar waves. It indicates that variation of electron density in the D-region ionosphere is dominant during solar flare events. This result is consistent with a previous study. We also compared the irradiation by X-ray and extreme ultra violet rays observed by the GOES-14 and GOES-15 satellites, which generated Doppler shifts. A positive Doppler shift is consistent with a change of X-ray展开更多
基金supported by the Polar Strategic Research Foundation of China(Grant no.20100203)the National Natural Science Foundation of China(Grant nos.40974083,41031064,40904041)+2 种基金the Ocean Public Welfare Scientific Research Project of China(Grant no.201005017)the International Collaboration Supporting Project,Chinese Arctic and Antarctic Administration(Grant no.IC201303)the National Basic Research Program of China(Grant no.2010CB950503-06)
文摘We present observations of a duskside shock aurora occurred on 21 April 2001 by the SuperDARN radar at Syowa Station and the all-sky camera at Zhongshan Station (ZHS) in Antarctica when the radar was operated in fast-scan mode covering the ZHS region. With the two independent data sets, we examine ionospheric plasma convection and aurora arising from a sudden impulse (SI) event associated with an interplanetary shock. During the transient shock compression, the aurora was quiescent without any optical emission at the preliminary impulse of the SI. About 7 min later, a new thin auroral arc with brighter emissions and a lifetime of -14 rain expanded westward from the region above ZHS during the main impulse of the SI. SuperDARN radar line-of-sight measurements showed periodical oscillation in the flow direction with ultra-low-frequency waves having a period of -8 min during the shock compression. We suggest that downward field-aligned current during the preliminary impulse stage of the SI was the main driver of the first plasma flow reversal, and the subsequent new discrete auroral arc may be associated with field-aligned acceleration in the region of the main impulse related upward field-aligned currents. The ground magnetometer observations suggest that the oscillation of the ionospheric convection on the duskside was associated with field line resonance activity.
基金supported by the National Natural Science Foundation of China (Grant no. 41031064)the Ocean Public Welfare Scientific Research Project of China (Grant no. 201005017)the Chinese Meridian Project,the Chinese Polar Environment Comprehensive Investigation & Assessment Programmes (Grant no. CHINARE 2012-02-03)
文摘Zhongshan HF radar, as one component of SuperDARN, has been established and in operation since April, 2010. Using data from the first two years of its operation, this paper investigates the radar's performance, the diurnal and seasonal variations o1 ionospheric echoes, and their dependence on geomagnetic activity. Statistical studies show that the occurrence of echoes in different beams varies at different frequencies, which arises from the direction of the beam and the area over which the beam can achieve the orthogonality condition between the wave vector and the Earth's magnetic field. The diurnal variation is obvious with double peak structures both in the occurrence rate and average power at 04-08 UT and 16-17 UT. The line-of-sight velocities are mainly positive on the dayside and negative on the nightside for Beam 0, which is the opposite of the trend for Beam 15. The spec- tral widths on the dayside are often higher than those on the nightside owing to the high energy particle precipitation in the cusp region. The seasonal variations are more obvious for those beams with larger numbers. The occurrence, the average power, the line-of-sight velocity, and the spectral widths are generally larger in the winter months than in the summer months. The influence of geomagnetic activity on radar echoes is significant. The peak echo occurrence appears on the dayside during geomagnetically quiet times, and shifts toward the nightside and exhibits an obvious decrease with increasing Kp. With increasing geomagnetic activity, the line-of-sight velocities increase, whereas the spectral widths decrease. The frequency dependence is investigated and it is found that in the operating frequency bands in 2010, 9-10 MHz is the most appropriate band for the SuperDARN Zhongshan radar.
基金supported by a Grant-in-Aid for Scientific Research of the Ministry of Education,Culture,Sports,Science and Technology of Japan(Grant no.19340141)by Special Funds for Education and Research(Energy Transport Processes in Geospace) of the Ministry of Education,Culture,Sports,Science and Technology of Japan
文摘We report on the characteristics of nighttime medium-scale traveling ionospheric disturbances (MSTIDs) propagating northward observed with the SuperDARN Hokkaido HF radar, which has a field of view to the north of Japan, and occasionally with the GNSS Earth Observation NETwork (GEONET), which provides total electron content (TEC) data over Japan. From statis- tical analysis of MSTIDs observed with the Hokkaido radar during nighttime (1700-0700 LT) from January 2007 to July 2009, we find that these MSTIDs traveling northward, although rare in comparison with those traveling southwestward, have a relatively high occurrence rate after sunset and around midnight in May and August, which is partly consistent with the occurrence rate of MSTIDs over Japan observed with GEONET in 2002, when the MSTID event database is available. We also use the data from simultaneous observation of nightside MSTIDs by the Hokkaido radar and GEONET to find that when the HF radar observed northward-propagating MSTIDs, GEONET did not always observe such MSTIDs with the same propagation direction. Judging from this result and considering the HF radar field of view located to the north of the GEONET coverage area, we speculate that some physical parameters of the ionosphere/thermosphere over Japan differ from those to the north of Japan, which may result in the inconsistency of MSTID propagation direction. The present results provide new knowledge of MSTIDs propagating northward using the Hokkaido radar, whose field of view was not covered by GEONET.
基金supported by a Grant-in-Aid for Scientific Research,of the Ministry of Education,Culture,Sports,Science and Technology of Japan(Grant no.19340141)by Special Funds for Education and Research(Energy Transport Processes in Geospace)of the Ministry of Education,Culture,Sports,Science and Technology of Japan
文摘It is well known that many types of ionospheric disturbances occur during solar flare events. The sudden increase in total electron content (SITEC) has been studied for several decades, but total electron content (TEC) data do not provide information on the altitudinal distribution of electron density changes. Previous studies used HF Doppler system data to investigate the contributions of the D-region and F-region ionospheric electron density changes by examining the HF radio wave frequency dependence on the Doppler shift values. In this study we examined the dependence of the elevation angle of the Doppler shift of ground scatter echoes using the SuperDARN Hokkaido radar. We analyzed solar flare events from Dec 2006 to Mar 2012. A sudden fade-out of echoes was observed in almost all the events we analyzed, which was the result of the radio absorption associated with a significant increase in electron density within the D-region ionosphere. In addition, we discovered positive Doppler shifts just before the sudden fade-out of echoes. The Doppler shift is negatively correlated with the elevation angle of received radar waves. It indicates that variation of electron density in the D-region ionosphere is dominant during solar flare events. This result is consistent with a previous study. We also compared the irradiation by X-ray and extreme ultra violet rays observed by the GOES-14 and GOES-15 satellites, which generated Doppler shifts. A positive Doppler shift is consistent with a change of X-ray