The Robin problem for the Helmholtz equation in normal-polar shells is addressed by using a suitable spherical harmonic expansion technique. Attention is in particular focused on the wide class of domains whose bounda...The Robin problem for the Helmholtz equation in normal-polar shells is addressed by using a suitable spherical harmonic expansion technique. Attention is in particular focused on the wide class of domains whose boundaries are defined by a generalized version of the so-called “superformula” introduced by Gielis. A dedicated numerical procedure based on the computer algebra system Mathematica? is developed in order to validate the proposed methodology. In this way, highly accurate approximations of the solution, featuring properties similar to the classical ones, are obtained.展开更多
In the previous work, an efficient method has been proposed to represent solid objects as multiple combinations of globally deformed supershapes. In this paper, this framework is applied with a new supershape implicit...In the previous work, an efficient method has been proposed to represent solid objects as multiple combinations of globally deformed supershapes. In this paper, this framework is applied with a new supershape implicit function that is based on the notion of radial distance and results are presented on realistic models composed of hundreds of hierarchically globally deformed supershapes. An implicit equation with guaranteed differential properties is obtained by simple combinations of the primitives~ implicit representations using R-function theory. The surface corresponding to the zero-set of the implicit equation is efficiently and directly polygonized using the primitives,parametric forms. Moreover, hierarchical global deformations are considered to increase the range of shapes that can be modeled. The potential of the approach is illustrated by representing complex models composed of several hundreds of primitives inspired from CAD models of mechanical parts.展开更多
文摘The Robin problem for the Helmholtz equation in normal-polar shells is addressed by using a suitable spherical harmonic expansion technique. Attention is in particular focused on the wide class of domains whose boundaries are defined by a generalized version of the so-called “superformula” introduced by Gielis. A dedicated numerical procedure based on the computer algebra system Mathematica? is developed in order to validate the proposed methodology. In this way, highly accurate approximations of the solution, featuring properties similar to the classical ones, are obtained.
文摘In the previous work, an efficient method has been proposed to represent solid objects as multiple combinations of globally deformed supershapes. In this paper, this framework is applied with a new supershape implicit function that is based on the notion of radial distance and results are presented on realistic models composed of hundreds of hierarchically globally deformed supershapes. An implicit equation with guaranteed differential properties is obtained by simple combinations of the primitives~ implicit representations using R-function theory. The surface corresponding to the zero-set of the implicit equation is efficiently and directly polygonized using the primitives,parametric forms. Moreover, hierarchical global deformations are considered to increase the range of shapes that can be modeled. The potential of the approach is illustrated by representing complex models composed of several hundreds of primitives inspired from CAD models of mechanical parts.