NCoCrAlSiYHf and CoNiCrAlTaY coatings which belong to protective Al 2O 3 scale forming type were deposited by multi arc ion plating technique . The effect of deposition process parameters on qualities of the coat...NCoCrAlSiYHf and CoNiCrAlTaY coatings which belong to protective Al 2O 3 scale forming type were deposited by multi arc ion plating technique . The effect of deposition process parameters on qualities of the coatings was discussed. The high temperature oxidation performances isothermal oxidation with 950℃ / 500h and 1100℃ / 100h were studied. And also, the hot corrosion performances at 700℃ and 800℃, with molten mixed salt composed of 75%wt Na 2SO 4 and 25%wt NaCl were investigated. Then the high temperature protection decaying mechanisms were proposed.展开更多
The Cr-/Si-modified Ni Al Hf coatings were produced on single-crystal(SC) superalloy N5 by electron beam physical vapor deposition(EB-PVD). The cyclic oxidation behavior of the coatings at 1100 °C was investi...The Cr-/Si-modified Ni Al Hf coatings were produced on single-crystal(SC) superalloy N5 by electron beam physical vapor deposition(EB-PVD). The cyclic oxidation behavior of the coatings at 1100 °C was investigated. The microstructures of the oxide scales grown on the coatings were characterized by scanning electron microscope(SEM) with energy-dispersive X-ray spectrum(EDX),electron probe micro-analyzer(EPMA) and X-ray diffraction(XRD). The effects of Cr and Si on the cyclic oxidation behavior of the Ni Al Hf coatings were discussed. The addition of Si to the Ni Al Hf Cr coating not only reduces the oxidation rate but also enhances the oxide scale adherence.Owing to the addition of Si in the coating, the segregation of Cr and Mo beneath the oxide scale is effectively avoided,which contributes to enhancing oxide scale adherence.展开更多
Turbine blades and vans operated in an aggressive gas environment usually suffer from combined oxidation and cycle loading effects. The surface oxide layer will result in premature failure and lead to a significant re...Turbine blades and vans operated in an aggressive gas environment usually suffer from combined oxidation and cycle loading effects. The surface oxide layer will result in premature failure and lead to a significant reduction in the service lifetime. The effects of prior oxidation-induced damage under a simulated combustion-gas environment on the fatigue lifetime of the directionally solidified(DS) nickel-based superalloy DZ125 with and without an oxidation-resistant coating were presented. The fatigue lifetime of uncoated samples is adversely affected by prior oxidation exposure. The deterioration of fatigue lifetime in uncoated samples is associated with surface microstructural degradation, which occurs during prior exposure. However,the presence of MCrAlY coating is beneficial for the sample's lifetime under high stress. Further scanning electron microscopy(SEM) analysis demonstrates that the coating does not contribute to the initiation mode of fatigue cracks.展开更多
A Cr-modified aluminide coating is prepared on a Ni-based superalloy using arc ion plating and subsequent pack cementation aluminizing.Hot corrosion behavior of the Cr-modified aluminide coating exposed to molten Na2S...A Cr-modified aluminide coating is prepared on a Ni-based superalloy using arc ion plating and subsequent pack cementation aluminizing.Hot corrosion behavior of the Cr-modified aluminide coating exposed to molten Na2SO4/K2SO4(3:1) or Na2SO4/NaCl(3:1) salts at 900 °C in static air are evaluated as well as the aluminide coating.The results indicate that compared with the aluminide coating,the anti-corrosion properties of the Cr-modified aluminide coating in the both salts are improved,which should be attributed to the beneficial effect of the Cr in the coating.The corrosion mechanism of the Cr-modified aluminide coating,especially the role of Cr in the mixture salt corrosion,is discussed.展开更多
文摘NCoCrAlSiYHf and CoNiCrAlTaY coatings which belong to protective Al 2O 3 scale forming type were deposited by multi arc ion plating technique . The effect of deposition process parameters on qualities of the coatings was discussed. The high temperature oxidation performances isothermal oxidation with 950℃ / 500h and 1100℃ / 100h were studied. And also, the hot corrosion performances at 700℃ and 800℃, with molten mixed salt composed of 75%wt Na 2SO 4 and 25%wt NaCl were investigated. Then the high temperature protection decaying mechanisms were proposed.
基金financially supported by the National Basic Research Program of China (Nos. 2012CB625100 and 2010CB631200)the National Natural Science Foundation of China (No. 51231001)
文摘The Cr-/Si-modified Ni Al Hf coatings were produced on single-crystal(SC) superalloy N5 by electron beam physical vapor deposition(EB-PVD). The cyclic oxidation behavior of the coatings at 1100 °C was investigated. The microstructures of the oxide scales grown on the coatings were characterized by scanning electron microscope(SEM) with energy-dispersive X-ray spectrum(EDX),electron probe micro-analyzer(EPMA) and X-ray diffraction(XRD). The effects of Cr and Si on the cyclic oxidation behavior of the Ni Al Hf coatings were discussed. The addition of Si to the Ni Al Hf Cr coating not only reduces the oxidation rate but also enhances the oxide scale adherence.Owing to the addition of Si in the coating, the segregation of Cr and Mo beneath the oxide scale is effectively avoided,which contributes to enhancing oxide scale adherence.
基金financially supported by National Basic Research Program of China (No.2015CB057401)
文摘Turbine blades and vans operated in an aggressive gas environment usually suffer from combined oxidation and cycle loading effects. The surface oxide layer will result in premature failure and lead to a significant reduction in the service lifetime. The effects of prior oxidation-induced damage under a simulated combustion-gas environment on the fatigue lifetime of the directionally solidified(DS) nickel-based superalloy DZ125 with and without an oxidation-resistant coating were presented. The fatigue lifetime of uncoated samples is adversely affected by prior oxidation exposure. The deterioration of fatigue lifetime in uncoated samples is associated with surface microstructural degradation, which occurs during prior exposure. However,the presence of MCrAlY coating is beneficial for the sample's lifetime under high stress. Further scanning electron microscopy(SEM) analysis demonstrates that the coating does not contribute to the initiation mode of fatigue cracks.
基金financially supported by the National Natural Science Foundation of China (No.51001106)National Basic Research Program of China (No.2012CB625100)
文摘A Cr-modified aluminide coating is prepared on a Ni-based superalloy using arc ion plating and subsequent pack cementation aluminizing.Hot corrosion behavior of the Cr-modified aluminide coating exposed to molten Na2SO4/K2SO4(3:1) or Na2SO4/NaCl(3:1) salts at 900 °C in static air are evaluated as well as the aluminide coating.The results indicate that compared with the aluminide coating,the anti-corrosion properties of the Cr-modified aluminide coating in the both salts are improved,which should be attributed to the beneficial effect of the Cr in the coating.The corrosion mechanism of the Cr-modified aluminide coating,especially the role of Cr in the mixture salt corrosion,is discussed.