A special winding machine with high accuracy has just been developed and applied to the construction of HT-7U Tokamak. It is one of the critical facilities for R & D of HT-7U construction. The machine mainly consi...A special winding machine with high accuracy has just been developed and applied to the construction of HT-7U Tokamak. It is one of the critical facilities for R & D of HT-7U construction. The machine mainly consists of five parts, including a CICC pay-off spool, a fourroller correcting assembly, a four-roller forming/bending assembly, a continuous winding structure and a CNC control system with three-axis AC servo motors. The facility is used for Cable in Conduit Conductor (CICC) magnet fabrication of HT-7U. The main requirements of the winding machine are: continuous winding to reduce joints inside the coils; pre-forming CICC conductor to avoid winding with tension; suitable for all TF & PF coils of various coil shapes and within the dimension limit; improving the configuration tolerance and the special flatness of the CICC conductor. This paper emphasizes on the design and fabrication of the special winding machine for HT-7U. Some analyses and techniques in winding process for trial D-shape coil are also presented.展开更多
This paper proposes the application of high-voltage stator-cable windings in superconducting machines,based on the characteristics of strong magnetic fields and large air gaps.Cross-linked polyethylene cable winding c...This paper proposes the application of high-voltage stator-cable windings in superconducting machines,based on the characteristics of strong magnetic fields and large air gaps.Cross-linked polyethylene cable winding can be employed to achieve a rated voltage of 35 kV in direct-current(DC)-field superconducting machines,thereby enabling a direct connection between the superconducting machine and the power grid,eliminating the need for transformers.We first,through finite element analysis,demonstrate that the proposed high-voltage high-temperature superconducting machine not only meets the requirement of a 35 kV-rated voltage,but also exhibits minimal flux leakage,torque fluctuation,and harmonic distortion.We then compare three candidate types to discuss the tradeoff between the multi-group superconducting field winding arrangement and machine performances.We propose inverted trapezoidal superconducting field winding as a promising candidate,because it has minimal superconductivity material usage,the largest safety margin for the superconducting coils(SCs),low thrust ripple,and low total harmonic distortion with the desired 35 kV-rated voltage.Finally,through large-scale design parameter sweeping,we show how we selected the optimal parameters for field winding and validated them by the finite element method.展开更多
An array of three GdBa_(2)Cu_(3)O_(7‐δ)bulk high‐temperature superconductors(HTS)that mimic the field pole of a high‐power superconducting motor had been magnetized by pulsed field magnetization(PFM)while cooled b...An array of three GdBa_(2)Cu_(3)O_(7‐δ)bulk high‐temperature superconductors(HTS)that mimic the field pole of a high‐power superconducting motor had been magnetized by pulsed field magnetization(PFM)while cooled by liquid nitrogen.The bulk array was magnetized by a passive PFM technique using three vortex‐type coils placed over each individual bulk and connected in series.The trapped magnetic flux density distribution was comparable to the distribution obtained with more traditional quasi‐static magnetization such as field‐cooling.This suggests that the use of PFM technique on arrays of HTS bulks is possible.PFM has also been performed using each coil individually,to magnetize each bulk sequentially.The magnetization sequences showed a maximum reduction of the peak trapped magnetic flux density of 12%due to the demagnetization effect of the magnetization sequence,while the trapped magnetization distribution was improved.展开更多
文摘A special winding machine with high accuracy has just been developed and applied to the construction of HT-7U Tokamak. It is one of the critical facilities for R & D of HT-7U construction. The machine mainly consists of five parts, including a CICC pay-off spool, a fourroller correcting assembly, a four-roller forming/bending assembly, a continuous winding structure and a CNC control system with three-axis AC servo motors. The facility is used for Cable in Conduit Conductor (CICC) magnet fabrication of HT-7U. The main requirements of the winding machine are: continuous winding to reduce joints inside the coils; pre-forming CICC conductor to avoid winding with tension; suitable for all TF & PF coils of various coil shapes and within the dimension limit; improving the configuration tolerance and the special flatness of the CICC conductor. This paper emphasizes on the design and fabrication of the special winding machine for HT-7U. Some analyses and techniques in winding process for trial D-shape coil are also presented.
基金State Grid Corporation of China R&D Project(No.5500-202319193A-1-1-ZN).
文摘This paper proposes the application of high-voltage stator-cable windings in superconducting machines,based on the characteristics of strong magnetic fields and large air gaps.Cross-linked polyethylene cable winding can be employed to achieve a rated voltage of 35 kV in direct-current(DC)-field superconducting machines,thereby enabling a direct connection between the superconducting machine and the power grid,eliminating the need for transformers.We first,through finite element analysis,demonstrate that the proposed high-voltage high-temperature superconducting machine not only meets the requirement of a 35 kV-rated voltage,but also exhibits minimal flux leakage,torque fluctuation,and harmonic distortion.We then compare three candidate types to discuss the tradeoff between the multi-group superconducting field winding arrangement and machine performances.We propose inverted trapezoidal superconducting field winding as a promising candidate,because it has minimal superconductivity material usage,the largest safety margin for the superconducting coils(SCs),low thrust ripple,and low total harmonic distortion with the desired 35 kV-rated voltage.Finally,through large-scale design parameter sweeping,we show how we selected the optimal parameters for field winding and validated them by the finite element method.
基金supported by JSPS KAKENHI Grant Numbers 20K21044(2020–2022).
文摘An array of three GdBa_(2)Cu_(3)O_(7‐δ)bulk high‐temperature superconductors(HTS)that mimic the field pole of a high‐power superconducting motor had been magnetized by pulsed field magnetization(PFM)while cooled by liquid nitrogen.The bulk array was magnetized by a passive PFM technique using three vortex‐type coils placed over each individual bulk and connected in series.The trapped magnetic flux density distribution was comparable to the distribution obtained with more traditional quasi‐static magnetization such as field‐cooling.This suggests that the use of PFM technique on arrays of HTS bulks is possible.PFM has also been performed using each coil individually,to magnetize each bulk sequentially.The magnetization sequences showed a maximum reduction of the peak trapped magnetic flux density of 12%due to the demagnetization effect of the magnetization sequence,while the trapped magnetization distribution was improved.