In weak measurement thought experiment, an ensemble consists of M quantum particles and N states. We observe that separability of the particles is lost, and hence we have fuzzy occupation numbers for the particles in ...In weak measurement thought experiment, an ensemble consists of M quantum particles and N states. We observe that separability of the particles is lost, and hence we have fuzzy occupation numbers for the particles in the ensemble. Without sharply measuring each particle state, quantum interferences add extra possible configurations of the ensemble, this explains the Quantum Pigeonhole Principle. This principle adds more entropy to the system;hence the particles seem to have a new kind of correlations emergent from particles not having a single, well-defined state. We formulated the Quantum Pigeonhole Principle in the language of abstract Hilbert spaces, then generalized it to systems consisting of mixed states. This insight into the fundamentals of quantum statistical mechanics could help us understand the interpretation of quantum mechanics more deeply, and possibly have implication on quantum computing and information theory.展开更多
In Lagrangian formulation, it is extremely difficult to compute the excited spectrum and wavefunctions ora quantum theory via Monte Carlo methods. Recently, we developed a Monte Carlo Hamiltonian method for investigat...In Lagrangian formulation, it is extremely difficult to compute the excited spectrum and wavefunctions ora quantum theory via Monte Carlo methods. Recently, we developed a Monte Carlo Hamiltonian method for investigating this hard problem and tested the algorithm in quantum-mechanical systems in 1+1 and 2t1 dimensions. In this paper we apply it to the study of thelow-energy quantum physics of the (3+1)-dimensional harmonic oscillator.展开更多
Based on the classical time division multi-channel communication theory, we present a scheme of quantum time- division multi-channel communication (QTDMC). Moreover, the model of quantum time division switch (QTDS...Based on the classical time division multi-channel communication theory, we present a scheme of quantum time- division multi-channel communication (QTDMC). Moreover, the model of quantum time division switch (QTDS) and correlative protocol of QTDMC are proposed. The quantum bit error rate (QBER) is analyzed and the QBER simulation test is performed. The scheme shows that the QTDS can carry out multi-user communication through quantum channel, the QBER can also reach the reliability requirement of communication, and the protocol of QTDMC has high practicability and transplantable. The scheme of QTDS may play an important role in the establishment of quantum communication in a large scale in the future.展开更多
In a recent paper [Yan F L et al. Chin.Phys.Lett. 25(2008)1187], a quantum secret sharing the protocol between multiparty and multiparty with single photons and unitary transformations was presented. We analyze the ...In a recent paper [Yan F L et al. Chin.Phys.Lett. 25(2008)1187], a quantum secret sharing the protocol between multiparty and multiparty with single photons and unitary transformations was presented. We analyze the security of the protocol and find that a dishonest participant can eavesdrop the key by using a special attack. Finally, we give a description of this strategy and put forward an improved version of this protocol which can stand against this kind of attack.展开更多
We recently proposed a flexible quantum secure direct communication protocol [Chin. Phys. Lett. 23 (2006) 3152]. By analyzing its security in the perfect channel from the aspect of quantum information theory, we fin...We recently proposed a flexible quantum secure direct communication protocol [Chin. Phys. Lett. 23 (2006) 3152]. By analyzing its security in the perfect channel from the aspect of quantum information theory, we find that an eavesdropper is capable of stealing all the information without being detected. Two typical attacks are presented to illustrate this point. A solution to this loophole is also suggested and we show its powerfulness against the most general individual attack in the ideal case. We also discuss the security in the imperfect case when there is noise and loss.展开更多
The wave/particle duality of particles in Physics is well known. Particles have properties that uniquely characterize them from one another, such as mass, charge and spin. Charged particles have associated Electric an...The wave/particle duality of particles in Physics is well known. Particles have properties that uniquely characterize them from one another, such as mass, charge and spin. Charged particles have associated Electric and Magnetic fields. Also, every moving particle has a De Broglie wavelength determined by its mass and velocity. This paper shows that all of these properties of a particle can be derived from a single wave function equation for that particle. Wave functions for the Electron and the Positron are presented and principles are provided that can be used to calculate the wave functions of all the fundamental particles in Physics. Fundamental particles such as electrons and positrons are considered to be point particles in the Standard Model of Physics and are not considered to have a structure. This paper demonstrates that they do indeed have structure and that this structure extends into the space around the particle’s center (in fact, they have infinite extent), but with rapidly diminishing energy density with the distance from that center. The particles are formed from Electromagnetic standing waves, which are stable solutions to the Schrödinger and Classical wave equations. This stable structure therefore accounts for both the wave and particle nature of these particles. In fact, all of their properties such as mass, spin and electric charge, can be accounted for from this structure. These particle properties appear to originate from a single point at the center of the wave function structure, in the same sort of way that the Shell theorem of gravity causes the gravity of a body to appear to all originate from a central point. This paper represents the first two fully characterized fundamental particles, with a complete description of their structure and properties, built up from the underlying Electromagnetic waves that comprise these and all fundamental particles.展开更多
A new implementation of high-dimensional quantum key distribution (QKD) protocol is discussed. Using three mutual unbiased bases, we present a d?level six-state QKD protocol that exploits the orbital angular moment...A new implementation of high-dimensional quantum key distribution (QKD) protocol is discussed. Using three mutual unbiased bases, we present a d?level six-state QKD protocol that exploits the orbital angular momentum with the spatial mode of the light beam. The protocol shows that the feature of a high capacity since keys are encoded using photon modes in d-level Hilbert space. The devices for state preparation and measurement are also discussed. This protocol has high security and the alignment of shared reference frames is not needed between sender and receiver.展开更多
A protocol is proposed to implement a three-qubit phase gate for photonic qubits in a three-mode cavity. The idea can be extended to directly implement a N-qubit phase gate. We also show that the interaction time rema...A protocol is proposed to implement a three-qubit phase gate for photonic qubits in a three-mode cavity. The idea can be extended to directly implement a N-qubit phase gate. We also show that the interaction time remains unchanged with the increasing number of qubits. In addition, the influence of cavity decay and atomic spontaneous emission on the gate fidelity and photon loss probability is also discussed by numerical calculation.展开更多
An entanglement purification protocol for mixed entangled states is presented via double quantum dot molecules inside a superconducing transmission line resonator (TLR). In the current scenario, coupling for arbitra...An entanglement purification protocol for mixed entangled states is presented via double quantum dot molecules inside a superconducing transmission line resonator (TLR). In the current scenario, coupling for arbitrary double quantum dot molecules can be tuned via the TLR in the large detuning region by controlling the qubit level splitting. The TLR is always empty and only virtually excited, so the interaction is insensitive to both the TLR decay and thermal field. Discussion about the feasibility of our scheme shows that the entanglement purification can be implemented with high fidelity and successful probability.展开更多
Superconducting quantum bits (qubits) and circuits are the leading candidate for the implementation of solid-state quantum computation. They have also been widely used in a variety of studies of quantum physics, ato...Superconducting quantum bits (qubits) and circuits are the leading candidate for the implementation of solid-state quantum computation. They have also been widely used in a variety of studies of quantum physics, atomic physics, quantum optics, and quantum simulation. In this article, we will present an overview of the basic principles of the superconducting qubits, including the phase, flux, charge, and transmon (Xmon) qubits, and the progress achieved so far concerning the improvements of the device design and quantum coherence property. Experimental studies in various research fields using the superconducting qubits and circuits will be briefly reviewed.展开更多
We theoretically design a single-mode plasmonic ring nanocavity. Based on the plasmonic cavity, the exciton dynamics between two identical quantum dots (QD-p, QD-q) coupled to the nanocavity are investigated. It is ...We theoretically design a single-mode plasmonic ring nanocavity. Based on the plasmonic cavity, the exciton dynamics between two identical quantum dots (QD-p, QD-q) coupled to the nanocavity are investigated. It is shown that the coupling factors gi (i = p, q) between QD-i and surface plasmons are both equal to 12.53meV in our model and exeiton population swap between the two QDs can be realized. The periods and amplitudes of population oscillations can be modified by the coupling factors. Our results may have potential applications in quantum information and quantum computation on a chip.展开更多
We propose a scheme for realizing the 1 → 2 universal quantum cloning machine (UQCM) with superconducting quantum interference device (SQUID) qubits in circuit quantum electrodynamics (circuit QED). In this sch...We propose a scheme for realizing the 1 → 2 universal quantum cloning machine (UQCM) with superconducting quantum interference device (SQUID) qubits in circuit quantum electrodynamics (circuit QED). In this scheme, in order to implement UQCM, we only need phase shift gate operation on SQUID qubits and the Raman transitions. The cavity number we need is only one. Thus our scheme is simple and has advantages in the experimental realization. Furthermore, both the cavity and the SQUID qubits are virtually excited, so the decoherence can be neglected.展开更多
We present a simple method to realize a swap gate at one step with two molecular ensembles in a stripline cavity. In this scheme, we can benefit from the enhancement of the coherent coupling and acquire a long coheren...We present a simple method to realize a swap gate at one step with two molecular ensembles in a stripline cavity. In this scheme, we can benefit from the enhancement of the coherent coupling and acquire a long coherent time with encoding qubits in different spin states of the rotational ground state in the molecular ensembles. As a by-product, a scheme to create an entangled state with one excitation stored in two ensembles is proposed.展开更多
The existing theory of decoy-state quantum cryptography assumes that the dark count rate is a constant, but in practice there exists fluctuation. We develop a new scheme of the decoy state, achieve a more practical ke...The existing theory of decoy-state quantum cryptography assumes that the dark count rate is a constant, but in practice there exists fluctuation. We develop a new scheme of the decoy state, achieve a more practical key generation rate in the presence of fluctuation of the dark count rate, and compare the result with the result of the decoy-state without fluctuation. It is found that the key generation rate and maximal secure distance will be decreased under the influence of the fluctuation of the dark count rate.展开更多
Quantum covariance and correlation coefficients of angular or SU(2) coherent states are directly calculated for all irreducible unitary representations. These results explicitly verify that the angular coherent stat...Quantum covariance and correlation coefficients of angular or SU(2) coherent states are directly calculated for all irreducible unitary representations. These results explicitly verify that the angular coherent states minimize the Robertson-Schrodinger uncertainty relation for all spins, which means that they are the so-called intelligent states. The same results can be obtained by the Schwinger representation approach.展开更多
To ensure a long-term quantum computational advantage,the quantum hardware should be upgraded to withstand the competition of continuously improved classical algorithms and hardwares.Here,we demonstrate a superconduct...To ensure a long-term quantum computational advantage,the quantum hardware should be upgraded to withstand the competition of continuously improved classical algorithms and hardwares.Here,we demonstrate a superconducting quantum computing systems Zuchongzhi 2.1,which has 66 qubits in a two-dimensional array in a tunable coupler architecture.The readout fidelity of Zuchongzhi 2.1 is considerably improved to an average of 97.74%.The more powerful quantum processor enables us to achieve larger-scale random quantum circuit sampling,with a system scale of up to 60 qubits and 24 cycles,and fidelity of FXEB=(3·66±0·345)×10^(-4).The achieved sampling task is about 6 orders of magnitude more difficult than that of Sycamore[Nature 574,505(2019)]in the classic simulation,and 3 orders of magnitude more difficult than the sampling task on Zuchongzhi 2.0[arXiv:2106.14734(2021)].The time consumption of classically simulating random circuit sampling experiment using state-of-the-art classical algorithm and supercomputer is extended to tens of thousands of years(about 4·8×104years),while Zuchongzhi 2.1 only takes about 4.2 h,thereby significantly enhancing the quantum computational advantage.展开更多
Using the method presented recently [Phys.Rev.A 77(2008)014306; Phys.Lett.A 369(2007)377], the transformation operator (TO) is explicitly given for teleporting an arbitrary three-qubit state with a six-qubit cha...Using the method presented recently [Phys.Rev.A 77(2008)014306; Phys.Lett.A 369(2007)377], the transformation operator (TO) is explicitly given for teleporting an arbitrary three-qubit state with a six-qubit channel and Bell-state measurements. A criterion on whether such quantum teleportation can be perfectly realized is educed in terms of TO. Moreover, six instantiations on TO and criterion are concisely shown.展开更多
In this contribution results from different disciplines of science were compared to show their intimate interweaving with each other having in common the golden ratio <i><span style="font-family:Verdana;...In this contribution results from different disciplines of science were compared to show their intimate interweaving with each other having in common the golden ratio <i><span style="font-family:Verdana;">φ</span></i><span style="font-family:Verdana;"> respectively its fifth power </span><i><span style="font-family:Verdana;">φ</span></i><sup><span style="font-family:Verdana;">5</span></sup><span style="font-family:Verdana;">. The research fields cover model calculations of statistical physics associated with phase transitions, the quantum probability of two particles, new physics of everything suggested by the information relativity theory (</span><i><span style="font-family:Verdana;">IRT</span></i><span style="font-family:Verdana;">) including explanations of cosmological relevance, the </span><i><span style="font-family:Verdana;">ε</span></i><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">-</span></span></span><span><span><span style="font-family:;" "=""><span style="font-family:Verdana;">infinity theory, superconductivity, and the </span><i><span style="font-family:Verdana;">Tammes</span></i><span style="font-family:Verdana;"> problem of the largest diameter of </span><i><span style="font-family:Verdana;">N</span></i><span style="font-family:Verdana;"> non-overlapping circles on the surface of a sphere with its connection to viral morphology and crystallography. Finally, </span><i><span style="font-family:Verdana;">Fibo</span><span style="font-family:Verdana;">nacci</span></i><span style="font-family:Verdana;"> anyons proposed for topological quantum</span><span style="font-family:Verdana;"> computation (</span><i><span style="font-family:Verdana;">TQC</span></i><span style="font-family:Verdana;">) were briefly described in comparison to the recently formulated reverse </span><i><span style="font-family:Verdana;">Fibonacci</span></i><span style="font-family:Verdana;"> approach using the </span><span style="font-family:Verdana;"><em>Jani</em></span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="white-space:nowrap;"><em>č</em></span><em>ko</em></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> number sequence. An architecture applicable for a quantum computer is proposed consisting of 13-step twisted microtubules similar to tubulin microtubules of living matter. Most topics point to the omnipresence of the golden mean as the numerical dominator of our world.</span></span></span>展开更多
In terms of the intermediate coordinate-momentum representation (Chin. Phys. Lett. 18 (2001) 850) and using the technique of integration within an ordered product of operators, we put the tomography theory into op...In terms of the intermediate coordinate-momentum representation (Chin. Phys. Lett. 18 (2001) 850) and using the technique of integration within an ordered product of operators, we put the tomography theory into operator version. We reveal the new relation between the tomogram and the characteristic function of the density operator. The new expansion of the density operator in terms of the intermediate coordinate-momentum representation is also obtained.展开更多
How to manipulate (operate or measure) single photons efficiently and simply is the basic problem in optical quantum information processing. We first present an efficient scheme to transform a biphoton polarization ...How to manipulate (operate or measure) single photons efficiently and simply is the basic problem in optical quantum information processing. We first present an efficient scheme to transform a biphoton polarization state to a corresponding single-photon state encoded by its polarization and spatial modes. This single-photon state carries both the information of the controlled and target photons. It will make the realization of bipartite positive- operator-valued measurements efficiently and simply. Moreover, the inverse transformation from the single-photon state back to the corresponding biphoton polarization state is also proposed. Using both the transformations, the realization of the arbitrary two-qubit unitary operation is simple with an M-Z interferometer. All the schemes are feasible with the current experimental technology.展开更多
文摘In weak measurement thought experiment, an ensemble consists of M quantum particles and N states. We observe that separability of the particles is lost, and hence we have fuzzy occupation numbers for the particles in the ensemble. Without sharply measuring each particle state, quantum interferences add extra possible configurations of the ensemble, this explains the Quantum Pigeonhole Principle. This principle adds more entropy to the system;hence the particles seem to have a new kind of correlations emergent from particles not having a single, well-defined state. We formulated the Quantum Pigeonhole Principle in the language of abstract Hilbert spaces, then generalized it to systems consisting of mixed states. This insight into the fundamentals of quantum statistical mechanics could help us understand the interpretation of quantum mechanics more deeply, and possibly have implication on quantum computing and information theory.
基金National Science Fund for Distingu .shed Young Scientists of China,国家自然科学基金,广东省自然科学基金,教育部科学技术研究项目,广东省国家通信公司资助项目,中山大学校科研和教改项目
文摘In Lagrangian formulation, it is extremely difficult to compute the excited spectrum and wavefunctions ora quantum theory via Monte Carlo methods. Recently, we developed a Monte Carlo Hamiltonian method for investigating this hard problem and tested the algorithm in quantum-mechanical systems in 1+1 and 2t1 dimensions. In this paper we apply it to the study of thelow-energy quantum physics of the (3+1)-dimensional harmonic oscillator.
基金Supported by the National Natural Science Foundation of China under Grant Nos 61072057 and 60672119, the 111 Project (B08038), the State Key Lab of Integrated Services Networks (ISN 1001004), the Fundamental Research Funds for the Central Universities (No K50510010004), the Natural Science Basic Research Project in Shaanxi Province (2010JM8021), Young Teacher Research Funds of Xilan Institute of Post and Telecommunication (ZL2010-05), and Scientific Research Project of the Education Department of Shaanxi (2010JK834).
文摘Based on the classical time division multi-channel communication theory, we present a scheme of quantum time- division multi-channel communication (QTDMC). Moreover, the model of quantum time division switch (QTDS) and correlative protocol of QTDMC are proposed. The quantum bit error rate (QBER) is analyzed and the QBER simulation test is performed. The scheme shows that the QTDS can carry out multi-user communication through quantum channel, the QBER can also reach the reliability requirement of communication, and the protocol of QTDMC has high practicability and transplantable. The scheme of QTDS may play an important role in the establishment of quantum communication in a large scale in the future.
基金Supported by the National Natural Science Foundation of China under Grant Nos 60873191, 60903152 and 60821001, the SRFDP under Grant No 200800131016, Beijing Nova Program under Grant No 2008B51, Key Project of the Ministry of Education of China under Grant No 109014, China Postdoctoral Science Foundation under Grant No 20090450018, Fujian Provincial Natural Science Foundation under Grant No 2008J0013, and the Foundation of Fujian Education Bureau under Grant No 3A08044.
文摘In a recent paper [Yan F L et al. Chin.Phys.Lett. 25(2008)1187], a quantum secret sharing the protocol between multiparty and multiparty with single photons and unitary transformations was presented. We analyze the security of the protocol and find that a dishonest participant can eavesdrop the key by using a special attack. Finally, we give a description of this strategy and put forward an improved version of this protocol which can stand against this kind of attack.
文摘We recently proposed a flexible quantum secure direct communication protocol [Chin. Phys. Lett. 23 (2006) 3152]. By analyzing its security in the perfect channel from the aspect of quantum information theory, we find that an eavesdropper is capable of stealing all the information without being detected. Two typical attacks are presented to illustrate this point. A solution to this loophole is also suggested and we show its powerfulness against the most general individual attack in the ideal case. We also discuss the security in the imperfect case when there is noise and loss.
文摘The wave/particle duality of particles in Physics is well known. Particles have properties that uniquely characterize them from one another, such as mass, charge and spin. Charged particles have associated Electric and Magnetic fields. Also, every moving particle has a De Broglie wavelength determined by its mass and velocity. This paper shows that all of these properties of a particle can be derived from a single wave function equation for that particle. Wave functions for the Electron and the Positron are presented and principles are provided that can be used to calculate the wave functions of all the fundamental particles in Physics. Fundamental particles such as electrons and positrons are considered to be point particles in the Standard Model of Physics and are not considered to have a structure. This paper demonstrates that they do indeed have structure and that this structure extends into the space around the particle’s center (in fact, they have infinite extent), but with rapidly diminishing energy density with the distance from that center. The particles are formed from Electromagnetic standing waves, which are stable solutions to the Schrödinger and Classical wave equations. This stable structure therefore accounts for both the wave and particle nature of these particles. In fact, all of their properties such as mass, spin and electric charge, can be accounted for from this structure. These particle properties appear to originate from a single point at the center of the wave function structure, in the same sort of way that the Shell theorem of gravity causes the gravity of a body to appear to all originate from a central point. This paper represents the first two fully characterized fundamental particles, with a complete description of their structure and properties, built up from the underlying Electromagnetic waves that comprise these and all fundamental particles.
基金Supported by the National Basic Research Program of China under Grant Nos 2006CB921106 and 2010CB923202, the Fundamental Research Funds for the Central Universities No BUPT2009RC0710, the Specialized Research Fund for the Doctoral Program of Higher Education of China under Grant No 20090005120008, and the National Natural Science Foundation of China under Grant No 10947151.
文摘A new implementation of high-dimensional quantum key distribution (QKD) protocol is discussed. Using three mutual unbiased bases, we present a d?level six-state QKD protocol that exploits the orbital angular momentum with the spatial mode of the light beam. The protocol shows that the feature of a high capacity since keys are encoded using photon modes in d-level Hilbert space. The devices for state preparation and measurement are also discussed. This protocol has high security and the alignment of shared reference frames is not needed between sender and receiver.
文摘A protocol is proposed to implement a three-qubit phase gate for photonic qubits in a three-mode cavity. The idea can be extended to directly implement a N-qubit phase gate. We also show that the interaction time remains unchanged with the increasing number of qubits. In addition, the influence of cavity decay and atomic spontaneous emission on the gate fidelity and photon loss probability is also discussed by numerical calculation.
基金Supported by the National Natural Science Foundation of China under Grant Nos 60678022 and 10704001, the Specialized Research Pund for the Doctoral Program of Higher Education under Grant No 20060357008, the Key Program of the Education Department of Anhui Province under Grant Nos KJ2009A048Z, the Talent Project of the Anhui Province for Outstanding Youth under Grant Nos 2010SQRL153ZD and 2010SQRL187.
文摘An entanglement purification protocol for mixed entangled states is presented via double quantum dot molecules inside a superconducing transmission line resonator (TLR). In the current scenario, coupling for arbitrary double quantum dot molecules can be tuned via the TLR in the large detuning region by controlling the qubit level splitting. The TLR is always empty and only virtually excited, so the interaction is insensitive to both the TLR decay and thermal field. Discussion about the feasibility of our scheme shows that the entanglement purification can be implemented with high fidelity and successful probability.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.91321208 and 11674380)the National Key Basic Research Program of the Ministry of Science and Technology of China(Grant Nos.2014CB921202,2015CB921104,and 2016YFA0300601)
文摘Superconducting quantum bits (qubits) and circuits are the leading candidate for the implementation of solid-state quantum computation. They have also been widely used in a variety of studies of quantum physics, atomic physics, quantum optics, and quantum simulation. In this article, we will present an overview of the basic principles of the superconducting qubits, including the phase, flux, charge, and transmon (Xmon) qubits, and the progress achieved so far concerning the improvements of the device design and quantum coherence property. Experimental studies in various research fields using the superconducting qubits and circuits will be briefly reviewed.
基金Supported by the Natural Science Foundation of China under Grant Nos 10534030 and 10874134, the National Basic Research Program of China under Grant No 2006CB921504, and Key Project of Ministry of Education of China under Grant No 708063.
文摘We theoretically design a single-mode plasmonic ring nanocavity. Based on the plasmonic cavity, the exciton dynamics between two identical quantum dots (QD-p, QD-q) coupled to the nanocavity are investigated. It is shown that the coupling factors gi (i = p, q) between QD-i and surface plasmons are both equal to 12.53meV in our model and exeiton population swap between the two QDs can be realized. The periods and amplitudes of population oscillations can be modified by the coupling factors. Our results may have potential applications in quantum information and quantum computation on a chip.
基金Supported by the National Natural Science Foundation of China under Grant Nos 60978009 and 60578055, and by the National Basic Research Program of China under Grant Nos 2009CB929604 and 2007CB925204.
文摘We propose a scheme for realizing the 1 → 2 universal quantum cloning machine (UQCM) with superconducting quantum interference device (SQUID) qubits in circuit quantum electrodynamics (circuit QED). In this scheme, in order to implement UQCM, we only need phase shift gate operation on SQUID qubits and the Raman transitions. The cavity number we need is only one. Thus our scheme is simple and has advantages in the experimental realization. Furthermore, both the cavity and the SQUID qubits are virtually excited, so the decoherence can be neglected.
文摘We present a simple method to realize a swap gate at one step with two molecular ensembles in a stripline cavity. In this scheme, we can benefit from the enhancement of the coherent coupling and acquire a long coherent time with encoding qubits in different spin states of the rotational ground state in the molecular ensembles. As a by-product, a scheme to create an entangled state with one excitation stored in two ensembles is proposed.
基金Supported by the National Natural Science Foundation of China under Grant No 10504042.
文摘The existing theory of decoy-state quantum cryptography assumes that the dark count rate is a constant, but in practice there exists fluctuation. We develop a new scheme of the decoy state, achieve a more practical key generation rate in the presence of fluctuation of the dark count rate, and compare the result with the result of the decoy-state without fluctuation. It is found that the key generation rate and maximal secure distance will be decreased under the influence of the fluctuation of the dark count rate.
文摘Quantum covariance and correlation coefficients of angular or SU(2) coherent states are directly calculated for all irreducible unitary representations. These results explicitly verify that the angular coherent states minimize the Robertson-Schrodinger uncertainty relation for all spins, which means that they are the so-called intelligent states. The same results can be obtained by the Schwinger representation approach.
基金the National Key R&D Program of China(2017YFA0304300),the Chinese Academy of Sciences,Anhui Initiative in Quantum Information Technologies,Technology Committee of Shanghai Municipality,National Natural Science Foundation of China(11905217,11774326,and 11905294)‘Shang-hai Municipal Science and Technology Major Project(2019SHZDZX01)’Natural Science Foundation of Shanghai(19ZR1462700)‘Key-Area Research and Development Program of Guangdong Province(2020B0303030001)’the Youth Talent Lifting Project(2020-JCJQ-QT-030)。
文摘To ensure a long-term quantum computational advantage,the quantum hardware should be upgraded to withstand the competition of continuously improved classical algorithms and hardwares.Here,we demonstrate a superconducting quantum computing systems Zuchongzhi 2.1,which has 66 qubits in a two-dimensional array in a tunable coupler architecture.The readout fidelity of Zuchongzhi 2.1 is considerably improved to an average of 97.74%.The more powerful quantum processor enables us to achieve larger-scale random quantum circuit sampling,with a system scale of up to 60 qubits and 24 cycles,and fidelity of FXEB=(3·66±0·345)×10^(-4).The achieved sampling task is about 6 orders of magnitude more difficult than that of Sycamore[Nature 574,505(2019)]in the classic simulation,and 3 orders of magnitude more difficult than the sampling task on Zuchongzhi 2.0[arXiv:2106.14734(2021)].The time consumption of classically simulating random circuit sampling experiment using state-of-the-art classical algorithm and supercomputer is extended to tens of thousands of years(about 4·8×104years),while Zuchongzhi 2.1 only takes about 4.2 h,thereby significantly enhancing the quantum computational advantage.
基金Supported by the New Century Excellent Talent Project (NCET) of the Ministry of Education of China under Grant No NCET-06-0554, the National Natural Science Foundation of China under Grant Nos 10975001, 60677001, 10747146 and 10874122, the Science-Technology Fund of Anhui Province for Outstanding Youth under Grant No 06042087, the Key Fund of the Ministry of Education of China under Grant No 206063, the General Fund of the Educational Committee of Anhui Province under Grant No 2006KJ260B, the Natural Science Foundation of Guangdong Province under Grant Nos 06300345 and 7007806, and the Talent Foundation of High Education of Anhui Province for Outstanding Youth under Grant No 2009SQRZ018.
文摘Using the method presented recently [Phys.Rev.A 77(2008)014306; Phys.Lett.A 369(2007)377], the transformation operator (TO) is explicitly given for teleporting an arbitrary three-qubit state with a six-qubit channel and Bell-state measurements. A criterion on whether such quantum teleportation can be perfectly realized is educed in terms of TO. Moreover, six instantiations on TO and criterion are concisely shown.
文摘In this contribution results from different disciplines of science were compared to show their intimate interweaving with each other having in common the golden ratio <i><span style="font-family:Verdana;">φ</span></i><span style="font-family:Verdana;"> respectively its fifth power </span><i><span style="font-family:Verdana;">φ</span></i><sup><span style="font-family:Verdana;">5</span></sup><span style="font-family:Verdana;">. The research fields cover model calculations of statistical physics associated with phase transitions, the quantum probability of two particles, new physics of everything suggested by the information relativity theory (</span><i><span style="font-family:Verdana;">IRT</span></i><span style="font-family:Verdana;">) including explanations of cosmological relevance, the </span><i><span style="font-family:Verdana;">ε</span></i><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">-</span></span></span><span><span><span style="font-family:;" "=""><span style="font-family:Verdana;">infinity theory, superconductivity, and the </span><i><span style="font-family:Verdana;">Tammes</span></i><span style="font-family:Verdana;"> problem of the largest diameter of </span><i><span style="font-family:Verdana;">N</span></i><span style="font-family:Verdana;"> non-overlapping circles on the surface of a sphere with its connection to viral morphology and crystallography. Finally, </span><i><span style="font-family:Verdana;">Fibo</span><span style="font-family:Verdana;">nacci</span></i><span style="font-family:Verdana;"> anyons proposed for topological quantum</span><span style="font-family:Verdana;"> computation (</span><i><span style="font-family:Verdana;">TQC</span></i><span style="font-family:Verdana;">) were briefly described in comparison to the recently formulated reverse </span><i><span style="font-family:Verdana;">Fibonacci</span></i><span style="font-family:Verdana;"> approach using the </span><span style="font-family:Verdana;"><em>Jani</em></span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="white-space:nowrap;"><em>č</em></span><em>ko</em></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> number sequence. An architecture applicable for a quantum computer is proposed consisting of 13-step twisted microtubules similar to tubulin microtubules of living matter. Most topics point to the omnipresence of the golden mean as the numerical dominator of our world.</span></span></span>
基金Supported by the National Natural Science Foundation of China under Grant No 10874174, and the President Foundation of Chinese Academy of Sciences.
文摘In terms of the intermediate coordinate-momentum representation (Chin. Phys. Lett. 18 (2001) 850) and using the technique of integration within an ordered product of operators, we put the tomography theory into operator version. We reveal the new relation between the tomogram and the characteristic function of the density operator. The new expansion of the density operator in terms of the intermediate coordinate-momentum representation is also obtained.
基金Supported by the National Natural Science Foundation of China under Grant No 11005040the Natural Science Foundation of Fujian Province under Grant No 2010J05008.
文摘How to manipulate (operate or measure) single photons efficiently and simply is the basic problem in optical quantum information processing. We first present an efficient scheme to transform a biphoton polarization state to a corresponding single-photon state encoded by its polarization and spatial modes. This single-photon state carries both the information of the controlled and target photons. It will make the realization of bipartite positive- operator-valued measurements efficiently and simply. Moreover, the inverse transformation from the single-photon state back to the corresponding biphoton polarization state is also proposed. Using both the transformations, the realization of the arbitrary two-qubit unitary operation is simple with an M-Z interferometer. All the schemes are feasible with the current experimental technology.