In this paper. the authors solve the free boundary problem (FBP) in continuouscasiing by using boundary element method (BEM). First, we simplify the generalmathematical model for continuous casting to a practicable ...In this paper. the authors solve the free boundary problem (FBP) in continuouscasiing by using boundary element method (BEM). First, we simplify the generalmathematical model for continuous casting to a practicable model, and give theboundary integral equations with partial unknown boundary for this model, anddescribe in detail the steps of calculating this FBP by using the BEM. Next, wepresent the result of our numerical experiments, and discuss the stability, convergenceand applicaiion of our method. At last. we simplify the former model so that it has ananalytic solution. and we compare its numerical solution resulted from our method withits analytic solution.展开更多
We are concerned with global solutions of multidimensional(M-D)Riemann problems for nonlinear hyperbolic systems of conservation laws,focusing on their global configurations and structures.We present some recent devel...We are concerned with global solutions of multidimensional(M-D)Riemann problems for nonlinear hyperbolic systems of conservation laws,focusing on their global configurations and structures.We present some recent developments in the rigorous analysis of two-dimensional(2-D)Riemann problems involving transonic shock waves through several prototypes of hyperbolic systems of conservation laws and discuss some further M-D Riemann problems and related problems for nonlinear partial differential equations.In particular,we present four different 2-D Riemann problems through these prototypes of hyperbolic systems and show how these Riemann problems can be reformulated/solved as free boundary problems with transonic shock waves as free boundaries for the corresponding nonlinear conservation laws of mixed elliptic-hyperbolic type and related nonlinear partial differential equations.展开更多
In this paper we consider a free boundary problem of superconductivity. Under isothermal conditions, a superconductor material of Type I will develop two phases separated by a sharp interfaCe Γ(t). In the normal cond...In this paper we consider a free boundary problem of superconductivity. Under isothermal conditions, a superconductor material of Type I will develop two phases separated by a sharp interfaCe Γ(t). In the normal conducting phase the magnetic field H is divergence free and satisfies the heat equation, whereas on the interfaCe Γ(t), curl H×n=-VnH, where n is the normal of Γ(t) and Vn is the velocity of Γ(t) in the direction of 6i further, |H|=Hc (constant) on Γ(t). Here our result consists of two parts: the first part is for the fixed boundary problem in 3-dimensional case with curl boundary condition, which has a unique global classical solution; the second part is for the free boundary problem in 2-dimensional case, a unique classical solution locally in time is established by Newton's iteration method.展开更多
In this paper the authors prove the existence and uniqueness of global classical solutions to some kinds of typical boundary-value problems and typical free-boundary problems for quasilinear hyperbolic systems.
In this paper,the global existence of the classical solution to the vacuum free boundary problem of full compressible magnetohydrodynamic equations with large initial data and axial symmetry is studied.The solutions t...In this paper,the global existence of the classical solution to the vacuum free boundary problem of full compressible magnetohydrodynamic equations with large initial data and axial symmetry is studied.The solutions to the system(1.6)–(1.8) are in the class of radius-dependent solutions,i.e.,independent of the axial variable and the angular variable.In particular,the expanding rate of the moving boundary is obtained.The main difficulty of this problem lies in the strong coupling of the magnetic field,velocity,temperature and the degenerate density near the free boundary.We overcome the obstacle by establishing the lower bound of the temperature by using different Lagrangian coordinates,and deriving the uniform-in-time upper and lower bounds of the Lagrangian deformation variable r;by weighted estimates,and also the uniform-in-time weighted estimates of the higher-order derivatives of solutions by delicate analysis.展开更多
In this paper, we study a free boundary problem for the 1D viscous radiative and reactive gas. We prove that for any large initial data, the problem admits a unique global generalized solution. Meanwhile, we obtain th...In this paper, we study a free boundary problem for the 1D viscous radiative and reactive gas. We prove that for any large initial data, the problem admits a unique global generalized solution. Meanwhile, we obtain the time-asymptotic behavior of the global solutions. Our results improve and generalize the previous work.展开更多
In this paper we study a free boundary problem modelling tumor growth, proposed by A. Friedman in 2004. This free boundary problem involves a nonlinear second-order parabolic equation describing the diffusion of nutri...In this paper we study a free boundary problem modelling tumor growth, proposed by A. Friedman in 2004. This free boundary problem involves a nonlinear second-order parabolic equation describing the diffusion of nutrient in the tumor, and three nonlinear first-order hyperbolic equations describing the evolution of proliferative cells, quiescent cells and dead cells, respectively. By applying Lp theory of parabolic equations, the characteristic theory of hyperbolic equations, and the Banach fixed point theorem, we prove that this problem has a unique global classical solution.展开更多
In this paper, we study a free boundary problem arising from the modeling of tumor growth. The problem comprises two unknown functions: R = R(t), the radius of the tumor, and u = u(r, t), the concentration of nut...In this paper, we study a free boundary problem arising from the modeling of tumor growth. The problem comprises two unknown functions: R = R(t), the radius of the tumor, and u = u(r, t), the concentration of nutrient in the tumor. The function u satisfies a nonlinear reaction diffusion equation in the region 0 〈 r 〈 R(t), t 〉 0, and the function R satisfies a nonlinear integrodifferential equation containing u. Under some general conditions, we establish global existence of transient solutions, unique existence of a stationary solution, and convergence of transient solutions toward the stationary solution as t →∞.展开更多
In this paper, we investigate the free boundary value problem (FBVP) for the cylindrically symmetric isentropic compressible Navier-Stokes equations (CNS) with density- dependent viscosity coefficients in the case...In this paper, we investigate the free boundary value problem (FBVP) for the cylindrically symmetric isentropic compressible Navier-Stokes equations (CNS) with density- dependent viscosity coefficients in the case that across the free surface stress tensor is balanced by a constant exterior pressure. Under certain assumptions imposed on the initial data, we prove that there exists a unique global strong solution which tends pointwise to a non-vacuum equilibrium state at an exponential time-rate as the time tends to infinity.展开更多
This paper presents research on a free boundary value problem arising in a nonlinear n-diffiision equation by using a homotopy analysis method(HAM).Approximate analytical solutions are obtained for special nonlinear d...This paper presents research on a free boundary value problem arising in a nonlinear n-diffiision equation by using a homotopy analysis method(HAM).Approximate analytical solutions are obtained for special nonlinear diffusion functional coefficient(variable thermal conduction)k(s)=s{i}for i=1,3,5 and convection functional coefficient h(s)=s{j}for j=1,4 and power law parameter of n=0.2,0.5,1.0,2.5.Reliability and efficiency of the approximate solutions are verified by numerical ones showing good agreement.The effects of the power law exponent,the nonlinear diffusion or convection functional coefficients,and the free boundary'parameter on the flux transport characteristics are presented graphically and analyzed in detail.The mathematical techniques employed in this paper have the significance in studying some other problems of engineering.展开更多
Let Ω be a bounded or unbounded domain in R~n. The initial-boundary value problem for the porous medium and plasma equation with singular terms is considered in this paper. Criteria for the appearance of quenching ph...Let Ω be a bounded or unbounded domain in R~n. The initial-boundary value problem for the porous medium and plasma equation with singular terms is considered in this paper. Criteria for the appearance of quenching phenomenon and the existence of global classical solution to the above problem are established. Also, the life span of the quenching solution is estimated or evaluated for some domains.展开更多
In the paper an inverse boundary value problem for a fourth order elliptic equation with an integral condition of the first kind is investigated. First, the given problem is reduced to an equivalent problem in a certa...In the paper an inverse boundary value problem for a fourth order elliptic equation with an integral condition of the first kind is investigated. First, the given problem is reduced to an equivalent problem in a certain sense. Then, using the Fourier method the equivalent problem is reduced to solving the system of integral equations. The existence and uniqueness of a solution to the system of integral equation is proved by the contraction mapping principle. This solution is also the unique solution to the equivalent problem. Finally, by equivalence, the theorem of existence and uniqueness of a classical solution to the given problem is proved.展开更多
In this paper, two kinds of initial boundary value problems for Kuramoto_Sivashinsky equation are considered. Some prior estimates are derived by Galerkin methods. The existence, uniqueness and regularities of the gen...In this paper, two kinds of initial boundary value problems for Kuramoto_Sivashinsky equation are considered. Some prior estimates are derived by Galerkin methods. The existence, uniqueness and regularities of the generalized global solutions and the classical global solutions for the equation are proved. Morever, the asymptotic behavior of these solutions are considered under some conditions.展开更多
We obtain explicit expressions for one unknown thermal coefficient (among the conductivity, mass density, specific heat and latent heat of fusion) of a semi-infinite material through the one-phase fractional Lamé...We obtain explicit expressions for one unknown thermal coefficient (among the conductivity, mass density, specific heat and latent heat of fusion) of a semi-infinite material through the one-phase fractional Lamé-Clapeyron-Stefan problem with an over-specified boundary condition on the fixed face . The partial differential equation and one of the conditions on the free boundary include a time Caputo’s fractional derivative of order . Moreover, we obtain the necessary and sufficient conditions on data in order to have a unique solution by using recent results obtained for the fractional diffusion equation exploiting the properties of the Wright and Mainardi functions, given in: 1) Roscani-Santillan Marcus, Fract. Calc. Appl. Anal., 16 (2013), 802 - 815;2) Roscani-Tarzia, Adv. Math. Sci. Appl., 24 (2014), 237 - 249 and 3) Voller, Int. J. Heat Mass Transfer, 74 (2014), 269 - 277. This work generalizes the method developed for the determination of unknown thermal coefficients for the classical Lamé-Clapeyron-Stefan problem given in Tarzia, Adv. Appl. Math., 3 (1982), 74 - 82, which is recovered by taking the limit when the order .展开更多
A free-boundary model of nonlinear dynamic system for pure forest is presented, in which the felling rate is unbounded nearby the free boundary. The effiect of unbounded function on a priori estimate and analysis of r...A free-boundary model of nonlinear dynamic system for pure forest is presented, in which the felling rate is unbounded nearby the free boundary. The effiect of unbounded function on a priori estimate and analysis of regularity is overcome, and the existence and uniqueness of the global classical solution to this system are proved.展开更多
The bedform evolution in an alluvial river system is studied. A mathematical model is designed to simulate the flow in the water sand region and the bedform processes.The model results in a free boundary problem. ...The bedform evolution in an alluvial river system is studied. A mathematical model is designed to simulate the flow in the water sand region and the bedform processes.The model results in a free boundary problem. Features of the free boundary problem are given.Explicit solutions as well as their physical implications for a few special cases of the free boundary problem are presented.展开更多
文摘In this paper. the authors solve the free boundary problem (FBP) in continuouscasiing by using boundary element method (BEM). First, we simplify the generalmathematical model for continuous casting to a practicable model, and give theboundary integral equations with partial unknown boundary for this model, anddescribe in detail the steps of calculating this FBP by using the BEM. Next, wepresent the result of our numerical experiments, and discuss the stability, convergenceand applicaiion of our method. At last. we simplify the former model so that it has ananalytic solution. and we compare its numerical solution resulted from our method withits analytic solution.
基金The research of Gui-Qiang G.Chen was supported in part by the UK Engineering and Physical Sciences Research Council Awards EP/L015811/1,EP/V008854/1,EP/V051121/1the Royal Society-Wolfson Research Merit Award WM090014.
文摘We are concerned with global solutions of multidimensional(M-D)Riemann problems for nonlinear hyperbolic systems of conservation laws,focusing on their global configurations and structures.We present some recent developments in the rigorous analysis of two-dimensional(2-D)Riemann problems involving transonic shock waves through several prototypes of hyperbolic systems of conservation laws and discuss some further M-D Riemann problems and related problems for nonlinear partial differential equations.In particular,we present four different 2-D Riemann problems through these prototypes of hyperbolic systems and show how these Riemann problems can be reformulated/solved as free boundary problems with transonic shock waves as free boundaries for the corresponding nonlinear conservation laws of mixed elliptic-hyperbolic type and related nonlinear partial differential equations.
文摘In this paper we consider a free boundary problem of superconductivity. Under isothermal conditions, a superconductor material of Type I will develop two phases separated by a sharp interfaCe Γ(t). In the normal conducting phase the magnetic field H is divergence free and satisfies the heat equation, whereas on the interfaCe Γ(t), curl H×n=-VnH, where n is the normal of Γ(t) and Vn is the velocity of Γ(t) in the direction of 6i further, |H|=Hc (constant) on Γ(t). Here our result consists of two parts: the first part is for the fixed boundary problem in 3-dimensional case with curl boundary condition, which has a unique global classical solution; the second part is for the free boundary problem in 2-dimensional case, a unique classical solution locally in time is established by Newton's iteration method.
文摘In this paper the authors prove the existence and uniqueness of global classical solutions to some kinds of typical boundary-value problems and typical free-boundary problems for quasilinear hyperbolic systems.
基金supported by National Natural Science Foundation of China(Grant Nos.11971477,11761141008,11601128 and 11671319)the Fundamental Research Funds for the Central Universities+3 种基金the Research Funds of Renmin University of China(Grant No.18XNLG30)Beijing Natural Science Foundation(Grant No.1182007)Doctor Fund of Henan Polytechnic University(Grant No.B2016-57)completed when Yaobin Ou visited Brown University under the support of the China Scholarship Council(Grant No.201806365010)。
文摘In this paper,the global existence of the classical solution to the vacuum free boundary problem of full compressible magnetohydrodynamic equations with large initial data and axial symmetry is studied.The solutions to the system(1.6)–(1.8) are in the class of radius-dependent solutions,i.e.,independent of the axial variable and the angular variable.In particular,the expanding rate of the moving boundary is obtained.The main difficulty of this problem lies in the strong coupling of the magnetic field,velocity,temperature and the degenerate density near the free boundary.We overcome the obstacle by establishing the lower bound of the temperature by using different Lagrangian coordinates,and deriving the uniform-in-time upper and lower bounds of the Lagrangian deformation variable r;by weighted estimates,and also the uniform-in-time weighted estimates of the higher-order derivatives of solutions by delicate analysis.
基金Supported by the NNSF of China(Grant No.11671367)the Natural Science Foundation of He’nan Province(Grant No.152300410227)the Key Research Projects of He’nan Higher Education Institutions(Grant No.18A110038)
文摘In this paper, we study a free boundary problem for the 1D viscous radiative and reactive gas. We prove that for any large initial data, the problem admits a unique global generalized solution. Meanwhile, we obtain the time-asymptotic behavior of the global solutions. Our results improve and generalize the previous work.
基金Supported by the National Natural Science Foundation of China (No.10171112).
文摘In this paper we study a free boundary problem modelling tumor growth, proposed by A. Friedman in 2004. This free boundary problem involves a nonlinear second-order parabolic equation describing the diffusion of nutrient in the tumor, and three nonlinear first-order hyperbolic equations describing the evolution of proliferative cells, quiescent cells and dead cells, respectively. By applying Lp theory of parabolic equations, the characteristic theory of hyperbolic equations, and the Banach fixed point theorem, we prove that this problem has a unique global classical solution.
基金Project supported by the China National Natural Science Foundation,Grant number:10171112
文摘In this paper, we study a free boundary problem arising from the modeling of tumor growth. The problem comprises two unknown functions: R = R(t), the radius of the tumor, and u = u(r, t), the concentration of nutrient in the tumor. The function u satisfies a nonlinear reaction diffusion equation in the region 0 〈 r 〈 R(t), t 〉 0, and the function R satisfies a nonlinear integrodifferential equation containing u. Under some general conditions, we establish global existence of transient solutions, unique existence of a stationary solution, and convergence of transient solutions toward the stationary solution as t →∞.
基金supported by NNSFC(11101145),supported by NNSFC(11326140 and11501323)China Postdoctoral Science Foundation(2012M520360)+1 种基金Doctoral Foundation of North China University of Water Sources and Electric Power(201032),Innovation Scientists and Technicians Troop Construction Projects of Henan Provincethe Doctoral Starting up Foundation of Quzhou University(BSYJ201314 and XNZQN201313)
文摘In this paper, we investigate the free boundary value problem (FBVP) for the cylindrically symmetric isentropic compressible Navier-Stokes equations (CNS) with density- dependent viscosity coefficients in the case that across the free surface stress tensor is balanced by a constant exterior pressure. Under certain assumptions imposed on the initial data, we prove that there exists a unique global strong solution which tends pointwise to a non-vacuum equilibrium state at an exponential time-rate as the time tends to infinity.
基金supported by the National Natural Science Foundation of China(Nos.51276014 and 51476191)supported by Qatar National Research Fund's National Priority Research Project(NPRP)5-674-1-114.
文摘This paper presents research on a free boundary value problem arising in a nonlinear n-diffiision equation by using a homotopy analysis method(HAM).Approximate analytical solutions are obtained for special nonlinear diffusion functional coefficient(variable thermal conduction)k(s)=s{i}for i=1,3,5 and convection functional coefficient h(s)=s{j}for j=1,4 and power law parameter of n=0.2,0.5,1.0,2.5.Reliability and efficiency of the approximate solutions are verified by numerical ones showing good agreement.The effects of the power law exponent,the nonlinear diffusion or convection functional coefficients,and the free boundary'parameter on the flux transport characteristics are presented graphically and analyzed in detail.The mathematical techniques employed in this paper have the significance in studying some other problems of engineering.
文摘Let Ω be a bounded or unbounded domain in R~n. The initial-boundary value problem for the porous medium and plasma equation with singular terms is considered in this paper. Criteria for the appearance of quenching phenomenon and the existence of global classical solution to the above problem are established. Also, the life span of the quenching solution is estimated or evaluated for some domains.
文摘In the paper an inverse boundary value problem for a fourth order elliptic equation with an integral condition of the first kind is investigated. First, the given problem is reduced to an equivalent problem in a certain sense. Then, using the Fourier method the equivalent problem is reduced to solving the system of integral equations. The existence and uniqueness of a solution to the system of integral equation is proved by the contraction mapping principle. This solution is also the unique solution to the equivalent problem. Finally, by equivalence, the theorem of existence and uniqueness of a classical solution to the given problem is proved.
文摘In this paper, two kinds of initial boundary value problems for Kuramoto_Sivashinsky equation are considered. Some prior estimates are derived by Galerkin methods. The existence, uniqueness and regularities of the generalized global solutions and the classical global solutions for the equation are proved. Morever, the asymptotic behavior of these solutions are considered under some conditions.
文摘We obtain explicit expressions for one unknown thermal coefficient (among the conductivity, mass density, specific heat and latent heat of fusion) of a semi-infinite material through the one-phase fractional Lamé-Clapeyron-Stefan problem with an over-specified boundary condition on the fixed face . The partial differential equation and one of the conditions on the free boundary include a time Caputo’s fractional derivative of order . Moreover, we obtain the necessary and sufficient conditions on data in order to have a unique solution by using recent results obtained for the fractional diffusion equation exploiting the properties of the Wright and Mainardi functions, given in: 1) Roscani-Santillan Marcus, Fract. Calc. Appl. Anal., 16 (2013), 802 - 815;2) Roscani-Tarzia, Adv. Math. Sci. Appl., 24 (2014), 237 - 249 and 3) Voller, Int. J. Heat Mass Transfer, 74 (2014), 269 - 277. This work generalizes the method developed for the determination of unknown thermal coefficients for the classical Lamé-Clapeyron-Stefan problem given in Tarzia, Adv. Appl. Math., 3 (1982), 74 - 82, which is recovered by taking the limit when the order .
基金Supported by the National Natural Science Foundation of China (90410011)
文摘A free-boundary model of nonlinear dynamic system for pure forest is presented, in which the felling rate is unbounded nearby the free boundary. The effiect of unbounded function on a priori estimate and analysis of regularity is overcome, and the existence and uniqueness of the global classical solution to this system are proved.
文摘The bedform evolution in an alluvial river system is studied. A mathematical model is designed to simulate the flow in the water sand region and the bedform processes.The model results in a free boundary problem. Features of the free boundary problem are given.Explicit solutions as well as their physical implications for a few special cases of the free boundary problem are presented.