期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
Synthesis of Ti-Ce-Si Binary and Ternary Nanocomposite Photocatalyst by Supercritical Fluid Drying Technology 被引量:2
1
作者 张敬畅 高玲玲 曹维良 《Journal of Rare Earths》 SCIE EI CAS CSCD 2006年第2期182-187,共6页
Ti-Ce, Ti-Si binary and Ti-Ce-Si ternary novel nanocomposite oxide photocatalysts were prepared with cheap inorganic salts TiCI4, Na2SiO3·9H2O and Ce(NO3)3·6H2O as precursors by supercritical fluid drying ... Ti-Ce, Ti-Si binary and Ti-Ce-Si ternary novel nanocomposite oxide photocatalysts were prepared with cheap inorganic salts TiCI4, Na2SiO3·9H2O and Ce(NO3)3·6H2O as precursors by supercritical fluid drying (SCFD) technology. The catalysts were characterized by means of XRD and TEM. The particle size of nanocomposite oxide photocatalysts synthesized by SCFD method is about 6 - 11 nm, which is smaller than those obtained by common drying method (CD). The phase transformation from anatase to rutile was inhibited by SCFD technology. The peaks of SiO2 and CeO2 in XRD patterns indicate that a SiO2 amorphorous phase exists in all the samples and CeO2 is well dispersed on the surface of TiO2. The orthogonal test was designed to optimize the preparing conditions. It is found that ceria dop;.ng enhances the photocatalyric activity markedly, and the optimum doping of CeO2 is 0.1%. The thermal stability of photocatalyst can be improved ; the growth of particle-size and the decrease of surface area can be prohibited by doping of SlOe. Heat-treatment is a necessary factor to induce chemistry change of Ti-Si surface. The optimum heat-treating temperature is 600℃. A novel and efficient Ti-Ce-Si ternary nanocomposite was prepared by SCFI) method with strong thermal stability and high photoactivity in the photodegratation of phenol. 展开更多
关键词 TITANIA SILICA CERIA nanocomposite photocatalysts supercritical fluid dried rare earths
下载PDF
Synthesis and Characterization of TiO_2-CeO_2 Nanocomposite by Supercritical Fluid Drying 被引量:2
2
作者 张敬畅 高玲玲 曹维良 《Journal of Rare Earths》 SCIE EI CAS CSCD 2003年第S1期134-137,共4页
TiO_2-CeO_2 nanocomposite particles were prepared with Ce(NO_3)_3·6H_2O and TiCl_4 as precursors by the codeposition method and supercritical fluid drying (SCFD) technology. The particles prepared were characteri... TiO_2-CeO_2 nanocomposite particles were prepared with Ce(NO_3)_3·6H_2O and TiCl_4 as precursors by the codeposition method and supercritical fluid drying (SCFD) technology. The particles prepared were characterized by means of XRD, TEM and FTIR. The results show that SCFD can give rise to the direct synthesis of the anatase TiO_2-CeO_2,and the particle size is 6~11 nm under 500 ℃ thermal-treated,smaller than that by common drying (CD). The phase transformation from anatase to rutile is inhibited by supercritical fluid drying technology. The peak of CeO_2 is not observed in XRD patterns,Ce-O band vibration was present in FTIR spectrum,which indicates that CeO_2 is well dispersed on the surface of TiO_2. 展开更多
关键词 TITANIA CERIA supercritical fluid dried NANOCOMPOSITE rare earths
下载PDF
Preparation of TiO_2-MoO_3 nano-composite photo-catalyst by supercritical fluid dry method 被引量:6
3
作者 ZHANGJing-chang LIQing CAOWei-liang 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2005年第2期350-352,共3页
A series of TiO 2-MoO 3 nano-composite photocatalysts were prepared by supercritical fluid dry method(SCFD) and an impregnation technique with TiCl 4 and (NH 4) 6Mo 7O 24 ·4H 2O as the starting materia... A series of TiO 2-MoO 3 nano-composite photocatalysts were prepared by supercritical fluid dry method(SCFD) and an impregnation technique with TiCl 4 and (NH 4) 6Mo 7O 24 ·4H 2O as the starting materials. The catalysts were characterized by the means of XRD, TEM and UV-Vis. Methyl orange was used as model compound for the evaluation of their catalytic activities. The results indicated that the photo-catalyst prepared by SCFD had the advantages of small size(12.84 nm), narrow distribution and good dispersivity. The presence of small amount of Mo in composite catalyst gives rise to the red shift of its absorbance wavelength, decrease of its energy gap and increase of the utility of visible light. Furthermore, higher surface acidity of the photo-catalyst was obtained as the result of the addition of MoO 3. Compared with pure TiO 2, the catalytic activity of the TiO 2-MoO 3 nano-composite photo-catalyst was improved significantly. As the doping concentration of the composite catalysts was controlled at 0.6%(molar percentage), 100% degradation of methyl orange was achieved with in 1.2 h irradiation time. 展开更多
关键词 TiO 2 MoO 3 PHOTOCATALYTIC supercritical fluid dry method
下载PDF
Preparation of (Ti, Sn)O_2 Nano-Composite Photocatalyst by Supercritical Fluid Dry Combination Technology 被引量:1
4
作者 Jingchang ZHANG, Qing LI and Weiliang CAO Institute of Modern Catalysis, The Key Laboratory of Science and Technology of Controllable Chemical Reactions, Ministry of Education, Beijing University of Chemical Technology, Beijing 100029, China 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2005年第2期191-195,共5页
A series of TiO2-SnO2 nano-sized composite photo-catalysts containing Sn (9.3%-30.1%) were prepared from TiCI4 and SnCl4·5H2O by using sol-gel, supercritical fluid dry and solid-phase reaction (SCFD) combination ... A series of TiO2-SnO2 nano-sized composite photo-catalysts containing Sn (9.3%-30.1%) were prepared from TiCI4 and SnCl4·5H2O by using sol-gel, supercritical fluid dry and solid-phase reaction (SCFD) combination technology. Characterizations with X-ray diffraction (XRD), transmission electron microscopy (TEM) and Fourier Transform Infrared Spectroscopy (FTIR) showed that, in addition to anatase type TiO2, a new active phase (Ti, Sn)O2 (with particle size of 2.0-4.3 nm) formed, and there were no SnO2 crystals observed in the range of the doping concentration studied. Photo-catalytic reaction of phenol was used as a model reaction to evaluate the catalytic activities of the obtained catalysts. Compared with pure TiO2 or Ti-Sn catalyst prepared with general sol-gel method, Ti-Sn nano-composite photo-catalyst thus obtained showed significant improvement in catalytic activity. The photo-catalytic degradation rate of phenol could reach as high as 93.5% after 7 h. The preparation conditions of the new phase (Ti, Sn)O2 were investigated and its catalytic mechanism was proposed. The photo-catalytic particles prepared using SCFD combination technology exhibited small particle size, large surface area and high activity. 展开更多
关键词 Anatase TiO2 (Ti Sn)O2 Photo-catalytic supercritical fluid dry method Solid-phase reaction
下载PDF
Synthesis and Photocatalytic Property of the ZrO_2/TiO_2 Pillared Laponite 被引量:1
5
作者 林英光 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2011年第5期852-856,共5页
The ZrO2/TiO2 pillared laponite (Ti-Zr-lap) photocatalysts were prepared with intercalation reaction by supercritical fluid drying (SCFD),and characterized by XRD,TEM,SEM and BET surface area analysis,and the phot... The ZrO2/TiO2 pillared laponite (Ti-Zr-lap) photocatalysts were prepared with intercalation reaction by supercritical fluid drying (SCFD),and characterized by XRD,TEM,SEM and BET surface area analysis,and the photocatalytic properties of Ti-Zr-lap were investigated by degradation of azo dye acid red B (ARB).The results showed that the ZrO2/TiO2 pillared structures in laponite could be formed,with the mass fraction of (Zr4++Ti4+)/laponite (Xm) increasing,the basal spacing and the BET surface area of Ti-Zr-lap significantly increased.The Ti-Zr-lap used as photocatalyst had the advantages of stable and porous layered structure,large surface area with the anatase type TiO2.Compared with the Ti-Zr-lap dried by air drying,the Ti-Zr-lap dried by SCFD showed better photocatalytic property which was very close to that of P25 TiO2.Using the Ti-Zr-lap as photocatalyst with the optimum Xm of 0.16 and the calcination temperature of 500 ℃,under the conditions of the initial concentration of ARB 20 mg/L,photocatalyst concentration of 1.5 g/L and irradiation time 60 min,the decoloring rate of ARB could achieve 98.3%,indicating that the Ti-Zr-lap had excellent photocatalytic property. 展开更多
关键词 ZrO2/TiO2 pillared laponite photocatalytic property intercalation reaction supercritical fluid drying
下载PDF
Synthesis and Characterization of Nanoscale Mullite Powder 被引量:1
6
作者 ZHAOHuizhong HUShoutian +1 位作者 WANGHouzhi ZHANGWenjie 《China's Refractories》 CAS 2003年第4期20-24,共5页
Nanoscale mullite powder were synthesized via Sol-gel-SCFD and middle temperature treatment by using AIP( aluminum-isopropoxde) and TEOS ( tetraethyl orthosili-cate) as starting materials. Both of the binary aerogel o... Nanoscale mullite powder were synthesized via Sol-gel-SCFD and middle temperature treatment by using AIP( aluminum-isopropoxde) and TEOS ( tetraethyl orthosili-cate) as starting materials. Both of the binary aerogel of alumina-silica and calcined nanoscale materials were investigated by using TG-DSC ( thermogravimetry-differentialscanning calorimeter) , TEM( transmission electron microscope) , XRD(X-Ray diffractometer ) and specific surfacearea and porosimetry. TG-DSC indicated the removal of most of the volatiles, i.e. 15.98% up to about 700℃ ,and in the DSC curve , existence of two exothermic peak atabout 445℃ and 1015℃ may be due to the crystallizationof Si-O-Al-O in diphasic gels and mullitization and a small endothermic peak at about 805℃ indicated the decomposition of structural water molecules . On the colligation of the results of TG-DSC, XRD and TEM, the beginning temperature of mullitization in Al2O3-SiO2 aerogel system can be confirmed at about 1015℃. XRD results also showed the formation of mullite at the range 1100-1200℃. TEM and surface area and porosimetry results showed that the nanosized mullite were calcinated at 1100and 1200℃ exhibited size 30 nm and 50 nm, specific surface area 138.91 m2/g and 95.81 m2/g. 展开更多
关键词 Nanosized mullite SOL-GEL supercritical fluid drying Synthesis CALCINATIONS
下载PDF
Processing and Sintering of Agglomerate-free CaO-ZrO2 Powder
7
作者 LipingLIANG Shu'eDANG +1 位作者 DongWU YuhanSUN 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2004年第4期435-438,共4页
Coprecipitation supercritical fluid drying technology has been employed to synthesize calcia-stabilized zirconia ultrafine powder with low-cost inorganic salts as the starting materials. The sintering behaviors of the... Coprecipitation supercritical fluid drying technology has been employed to synthesize calcia-stabilized zirconia ultrafine powder with low-cost inorganic salts as the starting materials. The sintering behaviors of these powders were also investigated. The results showed that supercritical fluid drying could effectively alleviate the hard agglomeration of grains during the gel drying process, and the morphology of the powder retained the network texture of the original gel. The resulting particles were characterized by small particle size (5-20 nm), better monodispersity and high surface area, which gave rise to high activity and sinterability. Consequently, these powders could readily be compacted into the desired shape and their densification could be carried out in shorter time and at lower temperatures. For instance, nanometer-sized powder calcined at 600癈 for 2 h could be cold-pressed into a green body and sintered at 1100?for 0.5 h to attain a dense body with bulk density of 5.9718 g/cm3 and specific pore volume of 0.0008 cm3/g. 展开更多
关键词 Calcia-stabilized zircornia Ultrafine powder supercritical fluid drying SINTERING
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部