The reintroduction of superficially porous particles has resulted in a leap forward for the separation performance in liquid chromatography. The underlying reasons for the higher efficiency of columns packed with thes...The reintroduction of superficially porous particles has resulted in a leap forward for the separation performance in liquid chromatography. The underlying reasons for the higher efficiency of columns packed with these particles are discussed. The performance of the newly introduced 5 p.m superficially porous particles is evaluated and compared to 2.7 pm superficially porous and 3.5 and 5 p.m fully porous columns using typical test compounds (alkylphenones) and a relevant pharmaceutical compound (impurity of amoxicillin). The 5 I.tm superficially porous particles provide a superior kinetic performance compared to both the 3.5 and 5 Ixm fully porous particles over the entire relevant range of separation conditions. The performance of the superficially porous particles, however, appears to depend strongly on retention and analyte properties, emphasizing the importance of comparing different columns under realistic conditions (high enough k) and using the compound of interest.展开更多
The advent of superficially porous particles (SPPs) for packed HPLC columns has changed the way that many practitioners have approached the problem of developing needed separations. The very high efficiency of such ...The advent of superficially porous particles (SPPs) for packed HPLC columns has changed the way that many practitioners have approached the problem of developing needed separations. The very high efficiency of such columns, combined with convenient operating conditions, modest back pressures and the ability to use conventional HPLC instruments has resulted in intense basic studies of SPP technology, and widespread applications in many sciences. This report contains an overview of the SPP technology first developed in 2006 by Advanced Materials Technology, Inc., for sub-3-11m particles, then expanded into a family of SPP products with different particle sizes, pore sizes and other physical parameters. This approach was designed so that each particle of the family could be optimized for separating a particular group of compounds, usually based on solute size.展开更多
基金K.B.is a fellow of the Research Foundation Flanders (FWO Vlaanderen)
文摘The reintroduction of superficially porous particles has resulted in a leap forward for the separation performance in liquid chromatography. The underlying reasons for the higher efficiency of columns packed with these particles are discussed. The performance of the newly introduced 5 p.m superficially porous particles is evaluated and compared to 2.7 pm superficially porous and 3.5 and 5 p.m fully porous columns using typical test compounds (alkylphenones) and a relevant pharmaceutical compound (impurity of amoxicillin). The 5 I.tm superficially porous particles provide a superior kinetic performance compared to both the 3.5 and 5 Ixm fully porous particles over the entire relevant range of separation conditions. The performance of the superficially porous particles, however, appears to depend strongly on retention and analyte properties, emphasizing the importance of comparing different columns under realistic conditions (high enough k) and using the compound of interest.
基金the partial support of this study provided bythe NIH with SBIR Grants GM099355 and GM093747
文摘The advent of superficially porous particles (SPPs) for packed HPLC columns has changed the way that many practitioners have approached the problem of developing needed separations. The very high efficiency of such columns, combined with convenient operating conditions, modest back pressures and the ability to use conventional HPLC instruments has resulted in intense basic studies of SPP technology, and widespread applications in many sciences. This report contains an overview of the SPP technology first developed in 2006 by Advanced Materials Technology, Inc., for sub-3-11m particles, then expanded into a family of SPP products with different particle sizes, pore sizes and other physical parameters. This approach was designed so that each particle of the family could be optimized for separating a particular group of compounds, usually based on solute size.