作为一种非线性维数约减算法,高斯过程隐变量模型(Gaussian process latent variable model,GPLVM)由于其适合处理小样本、高维数据,因而在模式识别、计算机视觉等领域得到了广泛应用.基于此,提出一种基于改进GPLVM的SAR图像目标特征提...作为一种非线性维数约减算法,高斯过程隐变量模型(Gaussian process latent variable model,GPLVM)由于其适合处理小样本、高维数据,因而在模式识别、计算机视觉等领域得到了广泛应用.基于此,提出一种基于改进GPLVM的SAR图像目标特征提取及自动识别方法,其中利用改进的GPLVM进行特征提取,高斯过程分类进行目标识别.传统GPLVM使用共轭梯度法对似然函数进行优化,为避免梯度估值易受噪声干扰、步长对算法影响严重等缺点,提出基于免疫克隆选择算法的GPLVM,利用其具有快速收敛到全局最优的特性提高算法性能.实验结果表明,该算法不仅降低了特征维数,且提高了识别精度,从而验证了算法用于SAR图像目标识别的有效性.展开更多
为了降低群体动画中生成大量自然而又相似的人体运动的难度和复杂性,研究了一种基于学习的群体动画生成技术。该技术首先通过建立基于高斯过程隐变量模型和隐空间动态模型的运动姿势学习模型,将高维运动姿势映射到低维隐空间中,并在低...为了降低群体动画中生成大量自然而又相似的人体运动的难度和复杂性,研究了一种基于学习的群体动画生成技术。该技术首先通过建立基于高斯过程隐变量模型和隐空间动态模型的运动姿势学习模型,将高维运动姿势映射到低维隐空间中,并在低维隐空间对相邻姿势的动态演化进行建模;然后通过对已有运动数据的学习来获得组成该运动的姿势的概率分布,再通过隐空间中的动态预测和Hybrid Monte Carlo采样来得到符合给定概率分布的隐轨迹;最后通过姿势重构来得到与原运动非常相似但又不同的一系列自然的运动,以产生群体动画,从而避开了传统的基于几何和物理约束的逆运动方法固有的困难和复杂性。展开更多
该文基于贝叶斯分析的视角,揭示了一类算法,包括使用隐变量模型的稀疏贝叶斯学习(SBL),正则化FOCUSS算法以及Log-Sum算法之间的内在关联。分析显示,作为隐变量贝叶斯模型的一种,稀疏贝叶斯学习使用第2类最大似然(Type II ML)在隐变量空...该文基于贝叶斯分析的视角,揭示了一类算法,包括使用隐变量模型的稀疏贝叶斯学习(SBL),正则化FOCUSS算法以及Log-Sum算法之间的内在关联。分析显示,作为隐变量贝叶斯模型的一种,稀疏贝叶斯学习使用第2类最大似然(Type II ML)在隐变量空间进行运算,可以视作一种更为广义和灵活的方法,并且为不适定反问题的稀疏求解提供了改进的途径。较之于目前基于第1类最大似然(Type I ML)的稀疏方法,仿真实验证实了稀疏贝叶斯学习的优越性能。展开更多
文摘作为一种非线性维数约减算法,高斯过程隐变量模型(Gaussian process latent variable model,GPLVM)由于其适合处理小样本、高维数据,因而在模式识别、计算机视觉等领域得到了广泛应用.基于此,提出一种基于改进GPLVM的SAR图像目标特征提取及自动识别方法,其中利用改进的GPLVM进行特征提取,高斯过程分类进行目标识别.传统GPLVM使用共轭梯度法对似然函数进行优化,为避免梯度估值易受噪声干扰、步长对算法影响严重等缺点,提出基于免疫克隆选择算法的GPLVM,利用其具有快速收敛到全局最优的特性提高算法性能.实验结果表明,该算法不仅降低了特征维数,且提高了识别精度,从而验证了算法用于SAR图像目标识别的有效性.
文摘为了降低群体动画中生成大量自然而又相似的人体运动的难度和复杂性,研究了一种基于学习的群体动画生成技术。该技术首先通过建立基于高斯过程隐变量模型和隐空间动态模型的运动姿势学习模型,将高维运动姿势映射到低维隐空间中,并在低维隐空间对相邻姿势的动态演化进行建模;然后通过对已有运动数据的学习来获得组成该运动的姿势的概率分布,再通过隐空间中的动态预测和Hybrid Monte Carlo采样来得到符合给定概率分布的隐轨迹;最后通过姿势重构来得到与原运动非常相似但又不同的一系列自然的运动,以产生群体动画,从而避开了传统的基于几何和物理约束的逆运动方法固有的困难和复杂性。
文摘该文基于贝叶斯分析的视角,揭示了一类算法,包括使用隐变量模型的稀疏贝叶斯学习(SBL),正则化FOCUSS算法以及Log-Sum算法之间的内在关联。分析显示,作为隐变量贝叶斯模型的一种,稀疏贝叶斯学习使用第2类最大似然(Type II ML)在隐变量空间进行运算,可以视作一种更为广义和灵活的方法,并且为不适定反问题的稀疏求解提供了改进的途径。较之于目前基于第1类最大似然(Type I ML)的稀疏方法,仿真实验证实了稀疏贝叶斯学习的优越性能。