The structural integrity of mine dumps is crucial for mining operations to avoid adverse impacts on the triple bottom-line.Routine temporal assessments of coal mine dumps are a compliant requirement to ensure design r...The structural integrity of mine dumps is crucial for mining operations to avoid adverse impacts on the triple bottom-line.Routine temporal assessments of coal mine dumps are a compliant requirement to ensure design reconciliation as spoil off-loading continues over time.Generally,the conventional in-situ coal spoil characterisation is inefficient,laborious,hazardous,and prone to experts'observation biases.To this end,this study explores a novel approach to develop automated coal spoil characterisation using unmanned aerial vehicle(UAV)based optical remote sensing.The textural and spectral properties of the high-resolution UAV images were utilised to derive lithology and geotechnical parameters(i.e.,fabric structure and relative density/consistency)in the proposed workflow.The raw images were converted to an orthomosaic using structure from motion aided processing.Then,structural descriptors were computed per pixel to enhance feature modalities of the spoil materials.Finally,machine learning algorithms were employed with ground truth from experts as training and testing data to characterise spoil rapidly with minimal human intervention.The characterisation accuracies achieved from the proposed approach manifest a digital solution to address the limitations in the conventional characterisation approach.展开更多
The proliferation of deluding data such as fake news and phony audits on news web journals,online publications,and internet business apps has been aided by the availability of the web,cell phones,and social media.Indi...The proliferation of deluding data such as fake news and phony audits on news web journals,online publications,and internet business apps has been aided by the availability of the web,cell phones,and social media.Individuals can quickly fabricate comments and news on social media.The most difficult challenge is determining which news is real or fake.Accordingly,tracking down programmed techniques to recognize fake news online is imperative.With an emphasis on false news,this study presents the evolution of artificial intelligence techniques for detecting spurious social media content.This study shows past,current,and possible methods that can be used in the future for fake news classification.Two different publicly available datasets containing political news are utilized for performing experiments.Sixteen supervised learning algorithms are used,and their results show that conventional Machine Learning(ML)algorithms that were used in the past perform better on shorter text classification.In contrast,the currently used Recurrent Neural Network(RNN)and transformer-based algorithms perform better on longer text.Additionally,a brief comparison of all these techniques is provided,and it concluded that transformers have the potential to revolutionize Natural Language Processing(NLP)methods in the near future.展开更多
基金supported by the Australian Coal Industry's Research Program(ACARP)[C29048].
文摘The structural integrity of mine dumps is crucial for mining operations to avoid adverse impacts on the triple bottom-line.Routine temporal assessments of coal mine dumps are a compliant requirement to ensure design reconciliation as spoil off-loading continues over time.Generally,the conventional in-situ coal spoil characterisation is inefficient,laborious,hazardous,and prone to experts'observation biases.To this end,this study explores a novel approach to develop automated coal spoil characterisation using unmanned aerial vehicle(UAV)based optical remote sensing.The textural and spectral properties of the high-resolution UAV images were utilised to derive lithology and geotechnical parameters(i.e.,fabric structure and relative density/consistency)in the proposed workflow.The raw images were converted to an orthomosaic using structure from motion aided processing.Then,structural descriptors were computed per pixel to enhance feature modalities of the spoil materials.Finally,machine learning algorithms were employed with ground truth from experts as training and testing data to characterise spoil rapidly with minimal human intervention.The characterisation accuracies achieved from the proposed approach manifest a digital solution to address the limitations in the conventional characterisation approach.
基金Abu Dhabi University’s Office of sponsored programs in the United Arab Emirates(Grant Number:19300752)funded this endeavor.
文摘The proliferation of deluding data such as fake news and phony audits on news web journals,online publications,and internet business apps has been aided by the availability of the web,cell phones,and social media.Individuals can quickly fabricate comments and news on social media.The most difficult challenge is determining which news is real or fake.Accordingly,tracking down programmed techniques to recognize fake news online is imperative.With an emphasis on false news,this study presents the evolution of artificial intelligence techniques for detecting spurious social media content.This study shows past,current,and possible methods that can be used in the future for fake news classification.Two different publicly available datasets containing political news are utilized for performing experiments.Sixteen supervised learning algorithms are used,and their results show that conventional Machine Learning(ML)algorithms that were used in the past perform better on shorter text classification.In contrast,the currently used Recurrent Neural Network(RNN)and transformer-based algorithms perform better on longer text.Additionally,a brief comparison of all these techniques is provided,and it concluded that transformers have the potential to revolutionize Natural Language Processing(NLP)methods in the near future.