期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Response of Watermelon to Gravel-Mulch and Supplementary Irrigation: Yield, Water Use Efficiency and Root Distribution 被引量:3
1
作者 ZHANGZhi-shan LIXin-rong +3 位作者 ZHANGPei-dong ZHANGJing-guang WANGXin-ping LIULi-chao 《Agricultural Sciences in China》 CAS CSCD 2004年第12期914-922,共9页
A field experiment was conducted to investigate the effect of supplementary irrigation on watermelon (Citullus lanatus) yield, water-use efficiency (WUE) and root distribution in gravel-mulched field in northwest Lo... A field experiment was conducted to investigate the effect of supplementary irrigation on watermelon (Citullus lanatus) yield, water-use efficiency (WUE) and root distribution in gravel-mulched field in northwest Loess Plateau, China, during 2001 and 2002 growing seasons. The results showed that gravel mulch significantly improved seedling emergence, increased yield and WUE, and alleviated the influence of drought on plant growth. Regardless of gravel mulch application, supplementary irrigation increased watermelon yields, average fruit weight and number of fruit, especially yield increased as the amount of irrigation increased (P<0.05). Generally, WUE of irrigated treatments were higher than that of non-irrigation treatment in gravel-mulched field. The effect of water supply on root distribution was different in two years. In 2001, average root length density (RLD) and root weight density (RWD) whole the soil profile increased. In 2002, however, RLD and RWD decreased as water supply increased. The average RLD and RWD in 2001 were significantly higher than those in 2002. Maybe we can interpret the phenomenon with the theory that there is a need to optimize root distribution (in terms of water relations) and aboveground biomass for a given water supply.The yield may not depend as much on root growth as on the amount of water required at critical stages. A significant effect of soil depth on RLD and RWD were observed in both years, but did not rapidly decrease with depth. 展开更多
关键词 Northwest Loess Plateau C. lanatus Gravel-mulch supplementary irrigation
下载PDF
Irrigation and Nitrogen Requirements of Wheat under Shallow Water Table Conditions of Asmara, Eritrea
2
作者 Fekadu Tesfamichael Ramesh Prasad Tripathi Mehreteab Tesfai 《Journal of Geoscience and Environment Protection》 2016年第4期80-87,共8页
Wheat (Triticum astivum L.) is traditionally rainfed in Eritrea. Yields are low because of poor soil management and low water and nutrient inputs. A field experiment was conducted in Akria farm, located in the outskir... Wheat (Triticum astivum L.) is traditionally rainfed in Eritrea. Yields are low because of poor soil management and low water and nutrient inputs. A field experiment was conducted in Akria farm, located in the outskirts of Asmara. The soil was clay loam associated with non-saline shallow water tables fluctuating from 0.4 to 1.2 m depths during the crop season. Wheat variety Wedel Nile was planted in split plot design with four levels of supplementary irrigations (SI) viz. I<sub>1</sub> (rainfed, 0 SI), I<sub>2</sub> (1/3 of full SI), I<sub>3</sub> (2/3 of full SI), and I<sub>4</sub> (full SI) in main plots and three levels of nitrogen viz. N<sub>1</sub> (18 kg N ha<sup>&#451</sup>), N<sub>2</sub> (50 kg N ha<sup>&#451</sup>), and N<sub>3</sub> (100 kg N ha<sup>&#451</sup>) as sub-plots in three replications. Full SI refers to amount of water necessary to replenish soil moisture deficit in the root zone from field capacity to 50% depletion of the available soil moisture. Groundwater table was constant around 0.4 m depth for 32 days from planting and declined slowly thereafter. Wetness around 0.3 m depth was thus near field capacity until second week of December and reduced thereafter with declining water table. Average soil moisture depletion was 94 mm under rainfed and 64 mm under full irrigation. No symptoms of wilting were observed in any of the treatments due to shallow water tables. Upward flux from the water table was 4.6 mm·d<sup>-1</sup> until 30 days from planting, which declined to 0.2 mm·d<sup>-1</sup> when the water table declined below 0.9 m depth. Optimum yield of wheat (5603 kg·ha<sup>-1</sup>) was obtained by application of 58 mm irrigation (I<sub>3</sub>) and 100 kg·ha<sup>-1</sup> nitrogen (N<sub>3</sub>). Total water use for optimum yield of wheat was 382 mm and water use efficiency was 14.7 kg·ha<sup>-1</sup>·mm<sup>-1</sup>. Contribution from water table to the evapotranspiration requirements of wheat was highest (61%) under rainfed (I<sub>1</sub>) and lowest (52%) under full SI (I<sub>4</sub>). 展开更多
关键词 EVAPOTRANSPIRATION NITROGEN supplementary irrigation Water Table Contribution Water Table WHEAT
下载PDF
Optimizing Tillage and Irrigation Requirements of Sorghum in Sorghum-Pigeonpea Intercrop in Hamelmalo Region of Eritrea
3
作者 Tesfalem Weldeslassie Ramesh Prasad Tripathi Woldeselassie Ogbazghi 《Journal of Geoscience and Environment Protection》 2016年第4期63-73,共11页
Sorghum (Sorghum bicolor L. Moench) is cultivated as monocrop in Eritrea. Efforts were made to grow sorghum-pigeonpea (Cajanus cajan L. Millspp.) intercrop on the tillage, fertilizers and supplementary irrigations nec... Sorghum (Sorghum bicolor L. Moench) is cultivated as monocrop in Eritrea. Efforts were made to grow sorghum-pigeonpea (Cajanus cajan L. Millspp.) intercrop on the tillage, fertilizers and supplementary irrigations necessary for sorghum. Experiments were conducted in terraced fields at Hamelmalo during 2013-15 to evaluate growth and yield of sorghum-pigeonpea intercrop in split plot design with conventional tillage (CT), reduced tillage (RT) and zero tillage (ZT) in main plots and rainfed (I<sub>0</sub>), 50% of full irrigation (I<sub>1</sub>), 75% of full irrigation (I<sub>2</sub>) and 100% of full irrigation (I<sub>3</sub>) in subplots. All irrigations were stopped 15 days before sorghum maturity. Full irrigation was 60 mm applied at 50% depletion of available soil water in 1 m profile. Sorghum growth was faster than pigeonpea until 85 days from planting and pigeonpea growth accelerated only after sorghum harvesting. About 80% of sorghum roots were within 0.6 m profile but more than 75% of pigeonpea roots were below 0.60 m depth. This showed a weaker competition between the two crops for nutrients, water and light. Both grain and stover yields of sorghum were optimum in RT + I<sub>2</sub> during the 2 years. Highest grain yield was 6900 kg·ha<sup>-1</sup> in RT + I<sub>3</sub> in 2013, which was at par with that in RT + I<sub>2</sub>. Mean residual soil moisture at sorghum harvesting was 74 mm·m<sup>-1</sup>, which decreased to 8 mm·m<sup>-1</sup> by pigeonpea harvesting. Residual moisture was more in the irrigated than non-irrigated plots. Pigeonpea yields were optimum (1363 kg·ha<sup>-1</sup>) in RT + I<sub>3</sub> and lowest (297 kg·ha<sup>-1</sup>) in ZT + I<sub>0</sub>. Average water use by sorghum-pigeonpea was 374 mm by sorghum harvesting and 438 mm by pigeonpea harvesting, producing total sorghum equivalent yield of 7475 kg·ha<sup>-1</sup>. This raised average water use efficiency from 12.6 kg·ha<sup>-1</sup>·mm<sup>-1</sup> at sorghum harvesting to 17.1 kg·ha<sup>-1</sup>·mm<sup>-1</sup> at pigeonpea harvesting. Benefit was doubled at 50% of full irrigation and >4 times at 75% of full irrigation. 展开更多
关键词 Residual Soil Moisture Sorghum-Pigeonpea Intercrop supplementary irrigation Water Use Efficiency
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部