The extensively built long-distance water transmission pipelines have become the main water sources for urban areas. To ensure the reliability and safety of the water supply, from the viewpoint of overall management, ...The extensively built long-distance water transmission pipelines have become the main water sources for urban areas. To ensure the reliability and safety of the water supply, from the viewpoint of overall management, it would be necessary to establish a system of information management for the pipeline. The monitoring, calculating and analyzing functions of the system serve to give controlling instructions and safe operating rules to the automatic equipment and technician, making sure the resistance coefficient distribution along the pipeline is reasonable; the hydraulic state transition is smooth when operating conditions change or water supply accidents occur, avoiding the damage of water hammer. This paper covered the composition structures of the information management system of long-distance water transmission pipelines and the functions of the subsystems, and finally elaborated on the approaches and steps of building a mathematics model for the analysis of dynamic hydraulic status.展开更多
in order to verify the heat-tolerance effect, two trainings, 90 min marching with load (WBGT 24. 6~35.6℃) and 10 km running (WBGT 25.0~31.1℃) were performed in laboratory and field under hot climate.Ten to twelve ...in order to verify the heat-tolerance effect, two trainings, 90 min marching with load (WBGT 24. 6~35.6℃) and 10 km running (WBGT 25.0~31.1℃) were performed in laboratory and field under hot climate.Ten to twelve times (days) of training were carried out展开更多
To overcome the disadvantages of displacement ventilation( DV) and traditional mixing ventilation( MV) system,a new ventilation system known as impinging jet ventilation system( IJVS)has been developing. The warm air ...To overcome the disadvantages of displacement ventilation( DV) and traditional mixing ventilation( MV) system,a new ventilation system known as impinging jet ventilation system( IJVS)has been developing. The warm air can be supplied with impinging jet ventilation( IJV), while the DV is only used for cooling.However,the flow and temperature field of IJV under heating scenario has had few references. The paper is mainly focused on computational fluid dynamics( CFD) and developing an adequate correlation between the distance L that warm air can reach and different parameters in the warm IJVS by using response surface methodology( RSM). The results indicate that L decreases as the supply velocity υ decreases but increases as the supply temperature difference ΔT or the discharge height h decreases. In the variable air volume( VAV) system, it is necessary to determine supply parameters both under the maximum-heat-load condition and the small-heat-load condition. Unlike the VAV system,the constant air volume( CAV) system has no need to study the small-heat-load condition. Draught discomfort near the nozzle becomes the issue of concern in IJVS, thus the suitable discharge height is of great importance in design and can be calculated based on the predictive model.展开更多
Purpose–The traction cable is paralleled with the existing traction network of electrified railway through transverse connecting line to form the scheme of long distance power supply for the traction network.This pap...Purpose–The traction cable is paralleled with the existing traction network of electrified railway through transverse connecting line to form the scheme of long distance power supply for the traction network.This paper aims to study the scheme composition and power supply distance(PSD)of the scheme.Design/methodology/approach–Based on the structure of parallel traction network(referred to as“cable traction network(CTN)”),the power supply modes(PSMs)are divided into cableþdirect PSM and cableþautotransformer(AT)PSM(including Japanese mode,French mode and new mode).Taking cableþJapanese AT PSM as an example,the scheme of long distance power supply for CTN under the PSMs of co-phase and out-of-phase power supply are designed.On the basis of establishing the equivalent circuit model and the chain circuit model of CTN,taking the train working voltage as the constraint condition,and based on the power flow calculation of multiple train loads,the calculation formula and process for determining the PSD of CTN are given.The impedance and PSD of CTN under the cableþAT PSM are simulated and analyzed,and a certain line is taken as an example to compare the scheme design.Findings–Results show that the equivalent impedance of CTN under the cableþAT PSM is smaller,and the PSD is about 2.5 times of that under the AT PSM,which can effectively increase the PSD and the flexibility of external power supply location.Originality/value–The research content can effectively improve the PSD of traction power supply system and has important reference value for the engineering application of the scheme.展开更多
Loop heat pipes(LHPs)are attractive two-phase thermal control devices for satellites,electronics and many other applications.They are capable of transporting heat efficiently for long distances up to several meters at...Loop heat pipes(LHPs)are attractive two-phase thermal control devices for satellites,electronics and many other applications.They are capable of transporting heat efficiently for long distances up to several meters at any orientation.This paper investigated the heat transfer characteristics of loop heat pipes with long distances and small diameter transport lines.Small stainless steel tubes of 2 mm and 3 mm in inner diameters were chosen as liquid lines and vapor lines of the LHPs.The local thermal resistances in the evaporator of the 6 m-LHP were researched and analyzed,which indicated that the thermal resistance between the aluminum block and the vapor in the vapor channel accounted for a major proportion of the total thermal resistance.The effect of heat sink temperatures on the performance of the 6 m-LHP were compared with 10°C,15°C,20°C and 25°C cooling water temperatures.Moreover,the thermal characteristics of LHPs with transport distances of 2 m and 16 m were also experimentally investigated.The 16 m-LHP could achieve a heat transfer capacity of 100 W and the 2 m-LHP could reach more than 339 W,on the premise of the evaporator temperature below 100°C.The thermal resistance of the 2 m-LHP could achieve 0.125°C/W.展开更多
The systematic or long-distance signal transmission plays crucial roles inanimal lives. Compared with animals, however, much less is known about the roles of long-distancesignal communication in plant lives. Using the...The systematic or long-distance signal transmission plays crucial roles inanimal lives. Compared with animals, however, much less is known about the roles of long-distancesignal communication in plant lives. Using the model plant Commelina communisL, we have probed theroot to shoot communication mediated by heat-shock signals. The results showed that a heat shock of5 min at 40°C in partial roots, i.e. half or even 1/4 root system, could lead to a significantdecrease in stomatal conductance. The regulation capability depends on both heat shock temperatureand the amount of root system, i.e. with higher temperature and more roots stressed, the leafconductance would decrease more significantly. Interestingly, the stomatal regulation by heat shocksignal is in a manner of oscillation: when stomata conductance decreased to the lowest level withinabout 30 min, it would increase rapidly and sometimes even exceed the initial level, and afterseveral cycles the stomata conductance would be finallystabilized at a lower level. Feeding xylemsap collected from heat-shocked plants could lead to a decrease in stomata conductance, suggestingthat the heat shock-initiated signal is basically a positive signal. Further studies showed thatheat shock wasnot able to affect ABA content in xylem sap, and also, not able to lead to a decreasein leaf water status, which suggested that the stomatal regulation was neither mediated by ABA norby a hydraulic signal. Heat shock could lead to an increase in xylemsap H_2O_2 content, andmoreover, the removal of H_2O_2 by catalase could partially recover the stomatal inhibition by xylemsap collected from heat-shocked plants, suggesting that H_2O_2 might be able to act as one of theroot signals to control the stomatal movement. Due to the fact that heat-shock and drought areusually two concomitant stresses, the stomatal regulation by heat-shock signal should be ofsignificance for plant response to stresses. The observation for the stomatal regulation in anoscillation manner by presently identified new signals should contribute to further understanding ofthe mystery for the pant systematic signaling in response to stresses.展开更多
基金Hi-Tech Research and Development Program of China (863 Program)(2002AA601140)
文摘The extensively built long-distance water transmission pipelines have become the main water sources for urban areas. To ensure the reliability and safety of the water supply, from the viewpoint of overall management, it would be necessary to establish a system of information management for the pipeline. The monitoring, calculating and analyzing functions of the system serve to give controlling instructions and safe operating rules to the automatic equipment and technician, making sure the resistance coefficient distribution along the pipeline is reasonable; the hydraulic state transition is smooth when operating conditions change or water supply accidents occur, avoiding the damage of water hammer. This paper covered the composition structures of the information management system of long-distance water transmission pipelines and the functions of the subsystems, and finally elaborated on the approaches and steps of building a mathematics model for the analysis of dynamic hydraulic status.
文摘in order to verify the heat-tolerance effect, two trainings, 90 min marching with load (WBGT 24. 6~35.6℃) and 10 km running (WBGT 25.0~31.1℃) were performed in laboratory and field under hot climate.Ten to twelve times (days) of training were carried out
基金National Natural Science Foundation of China(No.51278094)the Innovation Foundation of Shanghai Education Commission,China(No.13ZZ054)
文摘To overcome the disadvantages of displacement ventilation( DV) and traditional mixing ventilation( MV) system,a new ventilation system known as impinging jet ventilation system( IJVS)has been developing. The warm air can be supplied with impinging jet ventilation( IJV), while the DV is only used for cooling.However,the flow and temperature field of IJV under heating scenario has had few references. The paper is mainly focused on computational fluid dynamics( CFD) and developing an adequate correlation between the distance L that warm air can reach and different parameters in the warm IJVS by using response surface methodology( RSM). The results indicate that L decreases as the supply velocity υ decreases but increases as the supply temperature difference ΔT or the discharge height h decreases. In the variable air volume( VAV) system, it is necessary to determine supply parameters both under the maximum-heat-load condition and the small-heat-load condition. Unlike the VAV system,the constant air volume( CAV) system has no need to study the small-heat-load condition. Draught discomfort near the nozzle becomes the issue of concern in IJVS, thus the suitable discharge height is of great importance in design and can be calculated based on the predictive model.
基金funded by Youth Science Foundation Fund Project of National Natural Science Foundation of China(51607148)Science and Technology R&D Program of China State Railway Group Co.,Ltd.(SY2020G001)Project of Sichuan Science and Technology Program(2021YJ0028)。
文摘Purpose–The traction cable is paralleled with the existing traction network of electrified railway through transverse connecting line to form the scheme of long distance power supply for the traction network.This paper aims to study the scheme composition and power supply distance(PSD)of the scheme.Design/methodology/approach–Based on the structure of parallel traction network(referred to as“cable traction network(CTN)”),the power supply modes(PSMs)are divided into cableþdirect PSM and cableþautotransformer(AT)PSM(including Japanese mode,French mode and new mode).Taking cableþJapanese AT PSM as an example,the scheme of long distance power supply for CTN under the PSMs of co-phase and out-of-phase power supply are designed.On the basis of establishing the equivalent circuit model and the chain circuit model of CTN,taking the train working voltage as the constraint condition,and based on the power flow calculation of multiple train loads,the calculation formula and process for determining the PSD of CTN are given.The impedance and PSD of CTN under the cableþAT PSM are simulated and analyzed,and a certain line is taken as an example to compare the scheme design.Findings–Results show that the equivalent impedance of CTN under the cableþAT PSM is smaller,and the PSD is about 2.5 times of that under the AT PSM,which can effectively increase the PSD and the flexibility of external power supply location.Originality/value–The research content can effectively improve the PSD of traction power supply system and has important reference value for the engineering application of the scheme.
基金partially supported by the National Natural Science Foundation of China(No.51606207)Youth Innovation Promotion Association,CAS,China(No.2018036)。
文摘Loop heat pipes(LHPs)are attractive two-phase thermal control devices for satellites,electronics and many other applications.They are capable of transporting heat efficiently for long distances up to several meters at any orientation.This paper investigated the heat transfer characteristics of loop heat pipes with long distances and small diameter transport lines.Small stainless steel tubes of 2 mm and 3 mm in inner diameters were chosen as liquid lines and vapor lines of the LHPs.The local thermal resistances in the evaporator of the 6 m-LHP were researched and analyzed,which indicated that the thermal resistance between the aluminum block and the vapor in the vapor channel accounted for a major proportion of the total thermal resistance.The effect of heat sink temperatures on the performance of the 6 m-LHP were compared with 10°C,15°C,20°C and 25°C cooling water temperatures.Moreover,the thermal characteristics of LHPs with transport distances of 2 m and 16 m were also experimentally investigated.The 16 m-LHP could achieve a heat transfer capacity of 100 W and the 2 m-LHP could reach more than 339 W,on the premise of the evaporator temperature below 100°C.The thermal resistance of the 2 m-LHP could achieve 0.125°C/W.
基金supported by the National Basic Research Program of China(Grant No.2003CB114300)National Natural Science Foundation of China(Grant Nos.30270135&30470160).
文摘The systematic or long-distance signal transmission plays crucial roles inanimal lives. Compared with animals, however, much less is known about the roles of long-distancesignal communication in plant lives. Using the model plant Commelina communisL, we have probed theroot to shoot communication mediated by heat-shock signals. The results showed that a heat shock of5 min at 40°C in partial roots, i.e. half or even 1/4 root system, could lead to a significantdecrease in stomatal conductance. The regulation capability depends on both heat shock temperatureand the amount of root system, i.e. with higher temperature and more roots stressed, the leafconductance would decrease more significantly. Interestingly, the stomatal regulation by heat shocksignal is in a manner of oscillation: when stomata conductance decreased to the lowest level withinabout 30 min, it would increase rapidly and sometimes even exceed the initial level, and afterseveral cycles the stomata conductance would be finallystabilized at a lower level. Feeding xylemsap collected from heat-shocked plants could lead to a decrease in stomata conductance, suggestingthat the heat shock-initiated signal is basically a positive signal. Further studies showed thatheat shock wasnot able to affect ABA content in xylem sap, and also, not able to lead to a decreasein leaf water status, which suggested that the stomatal regulation was neither mediated by ABA norby a hydraulic signal. Heat shock could lead to an increase in xylemsap H_2O_2 content, andmoreover, the removal of H_2O_2 by catalase could partially recover the stomatal inhibition by xylemsap collected from heat-shocked plants, suggesting that H_2O_2 might be able to act as one of theroot signals to control the stomatal movement. Due to the fact that heat-shock and drought areusually two concomitant stresses, the stomatal regulation by heat-shock signal should be ofsignificance for plant response to stresses. The observation for the stomatal regulation in anoscillation manner by presently identified new signals should contribute to further understanding ofthe mystery for the pant systematic signaling in response to stresses.