One-class classification problem has become a popular problem in many fields, with a wide range of applications in anomaly detection, fault diagnosis, and face recognition. We investigate the one-class classification ...One-class classification problem has become a popular problem in many fields, with a wide range of applications in anomaly detection, fault diagnosis, and face recognition. We investigate the one-class classification problem for second-order tensor data. Traditional vector-based one-class classification methods such as one-class support vector machine (OCSVM) and least squares one-class support vector machine (LSOCSVM) have limitations when tensor is used as input data, so we propose a new tensor one-class classification method, LSOCSTM, which directly uses tensor as input data. On one hand, using tensor as input data not only enables to classify tensor data, but also for vector data, classifying it after high dimensionalizing it into tensor still improves the classification accuracy and overcomes the over-fitting problem. On the other hand, different from one-class support tensor machine (OCSTM), we use squared loss instead of the original loss function so that we solve a series of linear equations instead of quadratic programming problems. Therefore, we use the distance to the hyperplane as a metric for classification, and the proposed method is more accurate and faster compared to existing methods. The experimental results show the high efficiency of the proposed method compared with several state-of-the-art methods.展开更多
Tensor representation is useful to reduce the overfitting problem in vector-based learning algorithm in pattern recognition.This is mainly because the structure information of objects in pattern analysis is a reasonab...Tensor representation is useful to reduce the overfitting problem in vector-based learning algorithm in pattern recognition.This is mainly because the structure information of objects in pattern analysis is a reasonable constraint to reduce the number of unknown parameters used to model a classifier.In this paper, we generalize the vector-based learning algorithm TWin Support Vector Machine(TWSVM) to the tensor-based method TWin Support Tensor Machines(TWSTM), which accepts general tensors as input.To examine the effectiveness of TWSTM, we implement the TWSTM method for Microcalcification Clusters(MCs) detection.In the tensor subspace domain, the MCs detection procedure is formulated as a supervised learning and classification problem, and TWSTM is used as a classifier to make decision for the presence of MCs or not.A large number of experiments were carried out to evaluate and compare the performance of the proposed MCs detection algorithm.By comparison with TWSVM, the tensor version reduces the overfitting problem.展开更多
The discrimination of neutrons from gamma rays in a mixed radiation field is crucial in neutron detection tasks.Several approaches have been proposed to enhance the performance and accuracy of neutron-gamma discrimina...The discrimination of neutrons from gamma rays in a mixed radiation field is crucial in neutron detection tasks.Several approaches have been proposed to enhance the performance and accuracy of neutron-gamma discrimination.However,their performances are often associated with certain factors,such as experimental requirements and resulting mixed signals.The main purpose of this study is to achieve fast and accurate neutron-gamma discrimination without a priori information on the signal to be analyzed,as well as the experimental setup.Here,a novel method is proposed based on two concepts.The first method exploits the power of nonnegative tensor factorization(NTF)as a blind source separation method to extract the original components from the mixture signals recorded at the output of the stilbene scintillator detector.The second one is based on the principles of support vector machine(SVM)to identify and discriminate these components.In addition to these two main methods,we adopted the Mexican-hat function as a continuous wavelet transform to characterize the components extracted using the NTF model.The resulting scalograms are processed as colored images,which are segmented into two distinct classes using the Otsu thresholding method to extract the features of interest of the neutrons and gamma-ray components from the background noise.We subsequently used principal component analysis to select the most significant of these features wich are used in the training and testing datasets for SVM.Bias-variance analysis is used to optimize the SVM model by finding the optimal level of model complexity with the highest possible generalization performance.In this framework,the obtained results have verified a suitable bias–variance trade-off value.We achieved an operational SVM prediction model for neutron-gamma classification with a high true-positive rate.The accuracy and performance of the SVM based on the NTF was evaluated and validated by comparing it to the charge comparison method via figure of merit.The results indicate that the proposed approach has a superior discrimination quality(figure of merit of 2.20).展开更多
卷积神经网络已在多个领域取得了优异的性能表现,然而由于其不透明的内部状态,其可解释性依然面临很大的挑战.其中一个原因是卷积神经网络以像素级特征为输入,逐层地抽取高级别特征,然而这些高层特征依然十分抽象,人类不能直观理解.为...卷积神经网络已在多个领域取得了优异的性能表现,然而由于其不透明的内部状态,其可解释性依然面临很大的挑战.其中一个原因是卷积神经网络以像素级特征为输入,逐层地抽取高级别特征,然而这些高层特征依然十分抽象,人类不能直观理解.为了解决这一问题,我们需要表征出网络中隐藏的人类可理解的语义概念.本文通过预先定义语义概念数据集(例如红色、条纹、斑点、狗),得到这些语义在网络某一层的特征图,将这些特征图作为数据,训练一个张量分类器.我们将与分界面正交的张量称为语义激活张量(Semantic Activation Tensors,SATs),每个SAT都指向对应的语义概念.相对于向量分类器,张量分类器可以保留张量数据的原始结构.在卷积网络中,每个特征图中都包含了位置信息和通道信息,如果将其简单地展开成向量形式,这会破坏其结构信息,导致最终分类精度的降低.本文使用SAT与网络梯度的内积来量化语义对分类结果的重要程度,此方法称为TSAT(Testing with SATs).例如,条纹对斑马的预测结果有多大影响.本文以图像分类网络作为解释对象,数据集选取ImageNet,在ResNet50和Inceptionv3两种网络架构上进行实验验证.最终实验结果表明,本文所采用的张量分类方法相较于传统的向量分类方法,在数据维度较大或数据不易区分的情况下,分类精度有显著的提高,且分类的稳定性也更加优秀.这从而保证了本文所推导出的语义激活张量更加准确,进一步确保了后续语义概念重要性量化的准确性.展开更多
结构磁共振成像(s MRI)本质上具有三维张量结构,而传统的向量空间机器学习方法将其展开成向量进行建模,这破坏了数据的内在结构信息的完整性,降低了机器学习性能。为了克服数据向量化的弊端,提出了一种基于支持张量机(Support tensor ma...结构磁共振成像(s MRI)本质上具有三维张量结构,而传统的向量空间机器学习方法将其展开成向量进行建模,这破坏了数据的内在结构信息的完整性,降低了机器学习性能。为了克服数据向量化的弊端,提出了一种基于支持张量机(Support tensor machine,STM)的以3D T1加权MR脑白质图像为输入的阿尔兹海默症诊断算法。首先用SPM8软件将采集的MRI数据进行预处理,分割为灰质、白质、脑脊液3部分,提取脑白质各体素的灰度值构建三阶灰度张量,然后用递归特征消除(Recursive Feature Elimination,RFE)法结合支持张量机进行特征选择,最后用支持张量机进行分类。在阿尔兹海默症患者(AD),轻度认知障碍患者(MCI)(包括转化为AD的MCI-C和未转化的MCI-NC)以及正常对照(NC)4组人群中进行实验测试,并用10折交叉验证方法获得验证结果。用ROC曲线下面积AUC、分类准确率、敏感性、特异性这4个指标评价分类器的性能,AD vs NC组分别达到99.1%、97.14%、95.71%、98.57%;AD vs MCI组分别达到88.29%、84.07%、78.57%、91.07%;MCI vs NC组分别达到89.18%、87.91%、93.75%、78.57%;MCI-C vs MCI-NC组分别达到87.5%、82.08%、80.36%、82.14%。算法保持了原始图像的张量结构,提高了分类器的性能,实验结果表明此算法是一种有效的阿尔兹海默症诊断方法。展开更多
文摘One-class classification problem has become a popular problem in many fields, with a wide range of applications in anomaly detection, fault diagnosis, and face recognition. We investigate the one-class classification problem for second-order tensor data. Traditional vector-based one-class classification methods such as one-class support vector machine (OCSVM) and least squares one-class support vector machine (LSOCSVM) have limitations when tensor is used as input data, so we propose a new tensor one-class classification method, LSOCSTM, which directly uses tensor as input data. On one hand, using tensor as input data not only enables to classify tensor data, but also for vector data, classifying it after high dimensionalizing it into tensor still improves the classification accuracy and overcomes the over-fitting problem. On the other hand, different from one-class support tensor machine (OCSTM), we use squared loss instead of the original loss function so that we solve a series of linear equations instead of quadratic programming problems. Therefore, we use the distance to the hyperplane as a metric for classification, and the proposed method is more accurate and faster compared to existing methods. The experimental results show the high efficiency of the proposed method compared with several state-of-the-art methods.
基金Supported by the National Natural Science Foundation of China (No. 60771068)the Natural Science Basic Research Plan in Shaanxi Province of China (No. 2007F248)
文摘Tensor representation is useful to reduce the overfitting problem in vector-based learning algorithm in pattern recognition.This is mainly because the structure information of objects in pattern analysis is a reasonable constraint to reduce the number of unknown parameters used to model a classifier.In this paper, we generalize the vector-based learning algorithm TWin Support Vector Machine(TWSVM) to the tensor-based method TWin Support Tensor Machines(TWSTM), which accepts general tensors as input.To examine the effectiveness of TWSTM, we implement the TWSTM method for Microcalcification Clusters(MCs) detection.In the tensor subspace domain, the MCs detection procedure is formulated as a supervised learning and classification problem, and TWSTM is used as a classifier to make decision for the presence of MCs or not.A large number of experiments were carried out to evaluate and compare the performance of the proposed MCs detection algorithm.By comparison with TWSVM, the tensor version reduces the overfitting problem.
基金L’Ore´al-UNESCO for the Women in Science Maghreb Program Grant Agreement No.4500410340.
文摘The discrimination of neutrons from gamma rays in a mixed radiation field is crucial in neutron detection tasks.Several approaches have been proposed to enhance the performance and accuracy of neutron-gamma discrimination.However,their performances are often associated with certain factors,such as experimental requirements and resulting mixed signals.The main purpose of this study is to achieve fast and accurate neutron-gamma discrimination without a priori information on the signal to be analyzed,as well as the experimental setup.Here,a novel method is proposed based on two concepts.The first method exploits the power of nonnegative tensor factorization(NTF)as a blind source separation method to extract the original components from the mixture signals recorded at the output of the stilbene scintillator detector.The second one is based on the principles of support vector machine(SVM)to identify and discriminate these components.In addition to these two main methods,we adopted the Mexican-hat function as a continuous wavelet transform to characterize the components extracted using the NTF model.The resulting scalograms are processed as colored images,which are segmented into two distinct classes using the Otsu thresholding method to extract the features of interest of the neutrons and gamma-ray components from the background noise.We subsequently used principal component analysis to select the most significant of these features wich are used in the training and testing datasets for SVM.Bias-variance analysis is used to optimize the SVM model by finding the optimal level of model complexity with the highest possible generalization performance.In this framework,the obtained results have verified a suitable bias–variance trade-off value.We achieved an operational SVM prediction model for neutron-gamma classification with a high true-positive rate.The accuracy and performance of the SVM based on the NTF was evaluated and validated by comparing it to the charge comparison method via figure of merit.The results indicate that the proposed approach has a superior discrimination quality(figure of merit of 2.20).
文摘卷积神经网络已在多个领域取得了优异的性能表现,然而由于其不透明的内部状态,其可解释性依然面临很大的挑战.其中一个原因是卷积神经网络以像素级特征为输入,逐层地抽取高级别特征,然而这些高层特征依然十分抽象,人类不能直观理解.为了解决这一问题,我们需要表征出网络中隐藏的人类可理解的语义概念.本文通过预先定义语义概念数据集(例如红色、条纹、斑点、狗),得到这些语义在网络某一层的特征图,将这些特征图作为数据,训练一个张量分类器.我们将与分界面正交的张量称为语义激活张量(Semantic Activation Tensors,SATs),每个SAT都指向对应的语义概念.相对于向量分类器,张量分类器可以保留张量数据的原始结构.在卷积网络中,每个特征图中都包含了位置信息和通道信息,如果将其简单地展开成向量形式,这会破坏其结构信息,导致最终分类精度的降低.本文使用SAT与网络梯度的内积来量化语义对分类结果的重要程度,此方法称为TSAT(Testing with SATs).例如,条纹对斑马的预测结果有多大影响.本文以图像分类网络作为解释对象,数据集选取ImageNet,在ResNet50和Inceptionv3两种网络架构上进行实验验证.最终实验结果表明,本文所采用的张量分类方法相较于传统的向量分类方法,在数据维度较大或数据不易区分的情况下,分类精度有显著的提高,且分类的稳定性也更加优秀.这从而保证了本文所推导出的语义激活张量更加准确,进一步确保了后续语义概念重要性量化的准确性.
基金Supponed by the National Natural Science Foundation of China under Grant Nos.6060309660533090(国家自然科学基金)+3 种基金the National High-Tech Research and Development Plan of China under Grant No.2006AA010107(国家高技术研究发展计划(863)the N~ional Key Technology R&D Program 0f China under Grant No.2007BAH11B01(国家科技支撑计划)the Program for Changjiang Scholars and Innovative Research Team in University ofChina under Grant Nos.IRT0652PCSIRT(长江学者和创新团队发展计划)
文摘结构磁共振成像(s MRI)本质上具有三维张量结构,而传统的向量空间机器学习方法将其展开成向量进行建模,这破坏了数据的内在结构信息的完整性,降低了机器学习性能。为了克服数据向量化的弊端,提出了一种基于支持张量机(Support tensor machine,STM)的以3D T1加权MR脑白质图像为输入的阿尔兹海默症诊断算法。首先用SPM8软件将采集的MRI数据进行预处理,分割为灰质、白质、脑脊液3部分,提取脑白质各体素的灰度值构建三阶灰度张量,然后用递归特征消除(Recursive Feature Elimination,RFE)法结合支持张量机进行特征选择,最后用支持张量机进行分类。在阿尔兹海默症患者(AD),轻度认知障碍患者(MCI)(包括转化为AD的MCI-C和未转化的MCI-NC)以及正常对照(NC)4组人群中进行实验测试,并用10折交叉验证方法获得验证结果。用ROC曲线下面积AUC、分类准确率、敏感性、特异性这4个指标评价分类器的性能,AD vs NC组分别达到99.1%、97.14%、95.71%、98.57%;AD vs MCI组分别达到88.29%、84.07%、78.57%、91.07%;MCI vs NC组分别达到89.18%、87.91%、93.75%、78.57%;MCI-C vs MCI-NC组分别达到87.5%、82.08%、80.36%、82.14%。算法保持了原始图像的张量结构,提高了分类器的性能,实验结果表明此算法是一种有效的阿尔兹海默症诊断方法。