Wavelet, a powerful tool for signal processing, can be used to approximate the target func-tion. For enhancing the sparse property of wavelet approximation, a new algorithm was proposed by using wavelet kernel Support...Wavelet, a powerful tool for signal processing, can be used to approximate the target func-tion. For enhancing the sparse property of wavelet approximation, a new algorithm was proposed by using wavelet kernel Support Vector Machines (SVM), which can converge to minimum error with bet-ter sparsity. Here, wavelet functions would be firstly used to construct the admitted kernel for SVM according to Mercy theory; then new SVM with this kernel can be used to approximate the target fun-citon with better sparsity than wavelet approxiamtion itself. The results obtained by our simulation ex-periment show the feasibility and validity of wavelet kernel support vector machines.展开更多
小波网络具有小波的多尺度特性和神经网络的自学习功能,在回归估计中得到广泛的应用,但其性能受到样本中粗差的严重影响.虽然以M-估计作为目标函数可以解决这个问题,但由于其对应的影响函数由残差绝对值决定,因此如何选择初始参数值成...小波网络具有小波的多尺度特性和神经网络的自学习功能,在回归估计中得到广泛的应用,但其性能受到样本中粗差的严重影响.虽然以M-估计作为目标函数可以解决这个问题,但由于其对应的影响函数由残差绝对值决定,因此如何选择初始参数值成为一个关键问题.为此,提出回归函数的小波支持向量机鲁棒估计方法(小波支持向量回归,WSVR,Wavelet Support Vector Regression).该方法中首先提出并证明了一种新的小波支持向量机(WSVM,Wavelet Support Vector Machine),用于确定初始参数值方法,这种方法能够确定合理的网络结构和合适的初始参数值,保证含有粗差的样本点的残差绝对值较大;然后使用一种构造的M-估计作为目标函数,并提出了自适应确定阈值方法.仿真结果表明,使用这种方法得到的回归模型不仅具有良好的多尺度逼近特性,而且有较好的鲁棒性和较高的推广性能,具有较高的理论和应用价值.展开更多
文摘Wavelet, a powerful tool for signal processing, can be used to approximate the target func-tion. For enhancing the sparse property of wavelet approximation, a new algorithm was proposed by using wavelet kernel Support Vector Machines (SVM), which can converge to minimum error with bet-ter sparsity. Here, wavelet functions would be firstly used to construct the admitted kernel for SVM according to Mercy theory; then new SVM with this kernel can be used to approximate the target fun-citon with better sparsity than wavelet approxiamtion itself. The results obtained by our simulation ex-periment show the feasibility and validity of wavelet kernel support vector machines.
文摘小波网络具有小波的多尺度特性和神经网络的自学习功能,在回归估计中得到广泛的应用,但其性能受到样本中粗差的严重影响.虽然以M-估计作为目标函数可以解决这个问题,但由于其对应的影响函数由残差绝对值决定,因此如何选择初始参数值成为一个关键问题.为此,提出回归函数的小波支持向量机鲁棒估计方法(小波支持向量回归,WSVR,Wavelet Support Vector Regression).该方法中首先提出并证明了一种新的小波支持向量机(WSVM,Wavelet Support Vector Machine),用于确定初始参数值方法,这种方法能够确定合理的网络结构和合适的初始参数值,保证含有粗差的样本点的残差绝对值较大;然后使用一种构造的M-估计作为目标函数,并提出了自适应确定阈值方法.仿真结果表明,使用这种方法得到的回归模型不仅具有良好的多尺度逼近特性,而且有较好的鲁棒性和较高的推广性能,具有较高的理论和应用价值.