期刊文献+
共找到2,149篇文章
< 1 2 108 >
每页显示 20 50 100
Improved Twin Support Vector Machine Algorithm and Applications in Classification Problems
1
作者 Sun Yi Wang Zhouyang 《China Communications》 SCIE CSCD 2024年第5期261-279,共19页
The distribution of data has a significant impact on the results of classification.When the distribution of one class is insignificant compared to the distribution of another class,data imbalance occurs.This will resu... The distribution of data has a significant impact on the results of classification.When the distribution of one class is insignificant compared to the distribution of another class,data imbalance occurs.This will result in rising outlier values and noise.Therefore,the speed and performance of classification could be greatly affected.Given the above problems,this paper starts with the motivation and mathematical representing of classification,puts forward a new classification method based on the relationship between different classification formulations.Combined with the vector characteristics of the actual problem and the choice of matrix characteristics,we firstly analyze the orderly regression to introduce slack variables to solve the constraint problem of the lone point.Then we introduce the fuzzy factors to solve the problem of the gap between the isolated points on the basis of the support vector machine.We introduce the cost control to solve the problem of sample skew.Finally,based on the bi-boundary support vector machine,a twostep weight setting twin classifier is constructed.This can help to identify multitasks with feature-selected patterns without the need for additional optimizers,which solves the problem of large-scale classification that can’t deal effectively with the very low category distribution gap. 展开更多
关键词 FUZZY ordered regression(OR) relaxing variables twin support vector machine
下载PDF
Combination Computing of Support Vector Machine, Support Vector Regression and Molecular Docking for Potential Cytochrome P450 1A2 Inhibitors 被引量:1
2
作者 陈茜 乔连生 +2 位作者 蔡漪涟 张燕玲 李贡宇 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2016年第5期629-634,I0002,共7页
The computational approaches of support vector machine (SVM), support vector regression (SVR) and molecular docking were widely utilized for the computation of active compounds. In this work, to improve the accura... The computational approaches of support vector machine (SVM), support vector regression (SVR) and molecular docking were widely utilized for the computation of active compounds. In this work, to improve the accuracy and reliability of prediction, the strategy of combining the above three computational approaches was applied to predict potential cytochrome P450 1A2 (CYP1A2) inhibitors. The accuracy of the optimal SVM qualitative model was 99.432%, 97.727%, and 91.667% for training set, internal test set and external test set, respectively, showing this model had high discrimination ability. The R2 and mean square error for the optimal SVR quantitative model were 0.763, 0.013 for training set, and 0.753, 0.056 for test set respectively, indicating that this SVR model has high predictive ability for the biolog-ical activities of compounds. According to the results of the SVM and SVR models, some types of descriptors were identi ed to be essential to bioactivity prediction of compounds, including the connectivity indices, constitutional descriptors and functional group counts. Moreover, molecular docking studies were used to reveal the binding poses and binding a n-ity of potential inhibitors interacting with CYP1A2. Wherein, the amino acids of THR124 and ASP320 could form key hydrogen bond interactions with active compounds. And the amino acids of ALA317 and GLY316 could form strong hydrophobic bond interactions with active compounds. The models obtained above were applied to discover potential CYP1A2 inhibitors from natural products, which could predict the CYPs-mediated drug-drug inter-actions and provide useful guidance and reference for rational drug combination therapy. A set of 20 potential CYP1A2 inhibitors were obtained. Part of the results was consistent with references, which further indicates the accuracy of these models and the reliability of this combinatorial computation strategy. 展开更多
关键词 support vector machine support vector regression Molecular docking CYPIA2 inhibitor
下载PDF
Support vector regression-based operational effectiveness evaluation approach to reconnaissance satellite system
3
作者 HAN Chi XIONG Wei +1 位作者 XIONG Minghui LIU Zhen 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2023年第6期1626-1644,共19页
As one of the most important part of weapon system of systems(WSoS),quantitative evaluation of reconnaissance satellite system(RSS)is indispensable during its construction and application.Aiming at the problem of nonl... As one of the most important part of weapon system of systems(WSoS),quantitative evaluation of reconnaissance satellite system(RSS)is indispensable during its construction and application.Aiming at the problem of nonlinear effectiveness evaluation under small sample conditions,we propose an evaluation method based on support vector regression(SVR)to effectively address the defects of traditional methods.Considering the performance of SVR is influenced by the penalty factor,kernel type,and other parameters deeply,the improved grey wolf optimizer(IGWO)is employed for parameter optimization.In the proposed IGWO algorithm,the opposition-based learning strategy is adopted to increase the probability of avoiding the local optima,the mutation operator is used to escape from premature convergence and differential convergence factors are applied to increase the rate of convergence.Numerical experiments of 14 test functions validate the applicability of IGWO algorithm dealing with global optimization.The index system and evaluation method are constructed based on the characteristics of RSS.To validate the proposed IGWO-SVR evaluation method,eight benchmark data sets and combat simulation are employed to estimate the evaluation accuracy,convergence performance and computational complexity.According to the experimental results,the proposed method outperforms several prediction based evaluation methods,verifies the superiority and effectiveness in RSS operational effectiveness evaluation. 展开更多
关键词 reconnaissance satellite system(RSS) support vector regression(svr) gray wolf optimizer opposition-based learning parameter optimization effectiveness evaluation
下载PDF
Small-time scale network traffic prediction based on a local support vector machine regression model 被引量:10
4
作者 孟庆芳 陈月辉 彭玉华 《Chinese Physics B》 SCIE EI CAS CSCD 2009年第6期2194-2199,共6页
In this paper we apply the nonlinear time series analysis method to small-time scale traffic measurement data. The prediction-based method is used to determine the embedding dimension of the traffic data. Based on the... In this paper we apply the nonlinear time series analysis method to small-time scale traffic measurement data. The prediction-based method is used to determine the embedding dimension of the traffic data. Based on the reconstructed phase space, the local support vector machine prediction method is used to predict the traffic measurement data, and the BIC-based neighbouring point selection method is used to choose the number of the nearest neighbouring points for the local support vector machine regression model. The experimental results show that the local support vector machine prediction method whose neighbouring points are optimized can effectively predict the small-time scale traffic measurement data and can reproduce the statistical features of real traffic measurements. 展开更多
关键词 network traffic small-time scale nonlinear time series analysis support vector machine regression model
下载PDF
Spatial prediction of landslide susceptibility in western Serbia using hybrid support vector regression(SVR)with GWO,BAT and COA algorithms 被引量:7
5
作者 Abdul-Lateef Balogun Fatemeh Rezaie +6 位作者 Quoc Bao Pham Ljubomir Gigović Siniša Drobnjak Yusuf AAina Mahdi Panahi Shamsudeen Temitope Yekeen Saro Lee 《Geoscience Frontiers》 SCIE CAS CSCD 2021年第3期384-398,共15页
In this study,we developed multiple hybrid machine-learning models to address parameter optimization limitations and enhance the spatial prediction of landslide susceptibility models.We created a geographic informatio... In this study,we developed multiple hybrid machine-learning models to address parameter optimization limitations and enhance the spatial prediction of landslide susceptibility models.We created a geographic information system database,and our analysis results were used to prepare a landslide inventory map containing 359 landslide events identified from Google Earth,aerial photographs,and other validated sources.A support vector regression(SVR)machine-learning model was used to divide the landslide inventory into training(70%)and testing(30%)datasets.The landslide susceptibility map was produced using 14 causative factors.We applied the established gray wolf optimization(GWO)algorithm,bat algorithm(BA),and cuckoo optimization algorithm(COA)to fine-tune the parameters of the SVR model to improve its predictive accuracy.The resultant hybrid models,SVR-GWO,SVR-BA,and SVR-COA,were validated in terms of the area under curve(AUC)and root mean square error(RMSE).The AUC values for the SVR-GWO(0.733),SVR-BA(0.724),and SVR-COA(0.738)models indicate their good prediction rates for landslide susceptibility modeling.SVR-COA had the greatest accuracy,with an RMSE of 0.21687,and SVR-BA had the least accuracy,with an RMSE of 0.23046.The three optimized hybrid models outperformed the SVR model(AUC=0.704,RMSE=0.26689),confirming the ability of metaheuristic algorithms to improve model performance. 展开更多
关键词 LANDSLIDE machine learning METAHEURISTIC Spatial modeling support vector regression
下载PDF
Support Vector Machines for Regression: A Succinct Review of Large-Scale and Linear Programming Formulations 被引量:3
6
作者 Pablo Rivas-Perea Juan Cota-Ruiz +3 位作者 David Garcia Chaparro Jorge Arturo Perez Venzor Abel Quezada Carreón Jose Gerardo Rosiles 《International Journal of Intelligence Science》 2013年第1期5-14,共10页
Support Vector-based learning methods are an important part of Computational Intelligence techniques. Recent efforts have been dealing with the problem of learning from very large datasets. This paper reviews the most... Support Vector-based learning methods are an important part of Computational Intelligence techniques. Recent efforts have been dealing with the problem of learning from very large datasets. This paper reviews the most commonly used formulations of support vector machines for regression (SVRs) aiming to emphasize its usability on large-scale applications. We review the general concept of support vector machines (SVMs), address the state-of-the-art on training methods SVMs, and explain the fundamental principle of SVRs. The most common learning methods for SVRs are introduced and linear programming-based SVR formulations are explained emphasizing its suitability for large-scale learning. Finally, this paper also discusses some open problems and current trends. 展开更多
关键词 support vector machineS support vector regression Linear PROGRAMMING support vector regression
下载PDF
Prediction of protein binding sites using physical and chemical descriptors and the support vector machine regression method 被引量:1
7
作者 孙重华 江凡 《Chinese Physics B》 SCIE EI CAS CSCD 2010年第11期1-6,共6页
In this paper a new continuous variable called core-ratio is defined to describe the probability for a residue to be in a binding site, thereby replacing the previous binary description of the interface residue using ... In this paper a new continuous variable called core-ratio is defined to describe the probability for a residue to be in a binding site, thereby replacing the previous binary description of the interface residue using 0 and 1. So we can use the support vector machine regression method to fit the core-ratio value and predict the protein binding sites. We also design a new group of physical and chemical descriptors to characterize the binding sites. The new descriptors are more effective, with an averaging procedure used. Our test shows that much better prediction results can be obtained by the support vector regression (SVR) method than by the support vector classification method. 展开更多
关键词 protein binding site support vector machine regression cross-validation neighbour residue
下载PDF
Comparison of School Building Construction Costs Estimation Methods Using Regression Analysis, Neural Network, and Support Vector Machine 被引量:2
8
作者 Gwang-Hee Kim Jae-Min Shin +1 位作者 Sangyong Kim Yoonseok Shin 《Journal of Building Construction and Planning Research》 2013年第1期1-7,共7页
Accurate cost estimation at the early stage of a construction project is key factor in a project’s success. But it is difficult to quickly and accurately estimate construction costs at the planning stage, when drawin... Accurate cost estimation at the early stage of a construction project is key factor in a project’s success. But it is difficult to quickly and accurately estimate construction costs at the planning stage, when drawings, documentation and the like are still incomplete. As such, various techniques have been applied to accurately estimate construction costs at an early stage, when project information is limited. While the various techniques have their pros and cons, there has been little effort made to determine the best technique in terms of cost estimating performance. The objective of this research is to compare the accuracy of three estimating techniques (regression analysis (RA), neural network (NN), and support vector machine techniques (SVM)) by performing estimations of construction costs. By comparing the accuracy of these techniques using historical cost data, it was found that NN model showed more accurate estimation results than the RA and SVM models. Consequently, it is determined that NN model is most suitable for estimating the cost of school building projects. 展开更多
关键词 ESTIMATING Construction COSTS regression Analysis NEURAL Network support vector machine
下载PDF
Path Loss Modeling: A Machine Learning Based Approach Using Support Vector Regression and Radial Basis Function Models 被引量:3
9
作者 Stephen Ojo Arif Sari Taiwo P. Ojo 《Open Journal of Applied Sciences》 2022年第6期990-1010,共21页
Path loss prediction models are vital for accurate signal propagation in wireless channels. Empirical and deterministic models used in path loss predictions have not produced optimal results. In this paper, we introdu... Path loss prediction models are vital for accurate signal propagation in wireless channels. Empirical and deterministic models used in path loss predictions have not produced optimal results. In this paper, we introduced machine learning algorithms to path loss predictions because it offers a flexible network architecture and extensive data can be used. We introduced support vector regression (SVR) and radial basis function (RBF) models to path loss predictions in the investigated environments. The SVR model was able to process several input parameters without introducing complexity to the network architecture. The RBF on its part provides a good function approximation. Hyperparameter tuning of the machine learning models was carried out in order to achieve optimal results. The performances of the SVR and RBF models were compared and result validated using the root-mean squared error (RMSE). The two machine learning algorithms were also compared with the Cost-231, SUI, Egli, Freespace, Cost-231 W-I models. The analytical models overpredicted path loss. Overall, the machine learning models predicted path loss with greater accuracy than the empirical models. The SVR model performed best across all the indices with RMSE values of 1.378 dB, 1.4523 dB, 2.1568 dB in rural, suburban and urban settings respectively and should therefore be adopted for signal propagation in the investigated environments and beyond. 展开更多
关键词 support vector regression Radial Basis Function machine Learning Path Loss Empirical DETERMINISTIC
下载PDF
The seam offset identification based on support vector regression machines
10
作者 曾松盛 石永华 +1 位作者 王国荣 黄国兴 《China Welding》 EI CAS 2009年第2期75-80,共6页
The principle of the support vector regression machine(SVR) is first analysed. Then the new data-dependent kernel function is constructed from information geometry perspective. The current waveforms change regularly... The principle of the support vector regression machine(SVR) is first analysed. Then the new data-dependent kernel function is constructed from information geometry perspective. The current waveforms change regularly in accordance with the different horizontal offset when the rotational frequency of the high speed rotational arc sensor is in the range from 15 Hz to 30 Hz. The welding current data is pretreated by wavelet filtering, mean filtering and normalization treatment. The SVR model is constructed by making use of the evolvement laws, the decision function can be achieved by training the SVR and the seam offset can be identified. The experimental results show that the precision of the offset identification can be greatly improved by modifying the SVR and applying mean filteringfrom the longitudinal direction. 展开更多
关键词 support vector regression machine data-dependent kernel function offset identification mean filtering
下载PDF
Determination of reservoir induced earthquake using support vector machine and gaussian process regression
11
作者 Pijush Samui Dookie Kim 《Applied Geophysics》 SCIE CSCD 2013年第2期229-234,237,共7页
The prediction of magnitude (M) of reservoir induced earthquake is an important task in earthquake engineering. In this article, we employ a Support Vector Machine (SVM) and Gaussian Process Regression (GPR) for... The prediction of magnitude (M) of reservoir induced earthquake is an important task in earthquake engineering. In this article, we employ a Support Vector Machine (SVM) and Gaussian Process Regression (GPR) for prediction of reservoir induced earthquake M based on reservoir parameters. Comprehensive parameter (E) and maximum reservoir depth] (H) are considered as inputs to the SVM and GPR. We give an equation for determination oil reservoir induced earthquake M. The developed SVM and GPR have been compared with] the Artificial Neural Network (ANN) method. The results show that the developed SVM and] GPR are efficient tools for prediction of reservoir induced earthquake M. / 展开更多
关键词 Reservoir induced earthquake earthquake magnitude support vector machine Gaussian Process regression PREDICTION
下载PDF
基于SPA-GA-SVR模型的土壤水分及温度预测 被引量:5
12
作者 朱成杰 汪正权 《中国农村水利水电》 北大核心 2024年第1期30-36,共7页
土壤湿度和温度是影响水文循环和气候变化的重要参数,在农业实践活动和生态平衡中起着重要作用。为及时、准确地监测土壤含水量(Soil Moisture Content,SMC)及温度,提出了一种基于高光谱数据的预测方法。实验数据集来自为期5天的实地测... 土壤湿度和温度是影响水文循环和气候变化的重要参数,在农业实践活动和生态平衡中起着重要作用。为及时、准确地监测土壤含水量(Soil Moisture Content,SMC)及温度,提出了一种基于高光谱数据的预测方法。实验数据集来自为期5天的实地测量,所获得的高光谱数据包含大量的噪声及冗余信息,因此首先用Savitzky-Golay卷积平滑对光谱数据进行降噪处理,利用连续投影算法(Successive Projection Algorithm,SPA)提取数据特征波长,然后通过遗传算法(Genetic Algorithm,GA)对支持向量机回归(Support Vector Regression,SVR)的超参数权值和偏置进行优化,构建SPA-GASVR混合算法模型对土壤水分和温度进行预测,并与BP神经网络(Back Propagation Neural Network,BPNN)、SPA-BP、SVR、SPA-SVR、GA-SVR这5种模型的预测性能进行比较。实验结果表明:各模型在土壤湿度低于30%的情况下,表现出的预测能力差异并不显著。但整体上,复合模型相比于单一的神经网络或机器学习模型具有明显的优势,且经过连续投影算法优化的模型进一步的提高其预测能力,最终SPA-GA-SVR算法在各项指标上均优于其他模型,土壤水分预测模型的R^(2)=0.981、RMSE=0.473%,土壤温度预测模型R^(2)=0.963、RMSE=0.883℃。实验证明基于高光谱数据,经过SPA和GA优化的SVR模型能实现对土壤湿度和温度精准的预测。该方法具有一定的应用价值和现实意义,可应用于便携式高光谱仪和无人机上,实现对土壤水分和温度的实时监测,为今后的播种及灌溉提供理论参考。 展开更多
关键词 土壤水分 土壤温度 高光谱 连续投影算法(SPA) 遗传算法-支持向量机回归(GA-svr)
下载PDF
基于参数自适应SVR和VMD-TCN的水电机组劣化趋势预测 被引量:1
13
作者 王淑青 柯洋洋 +2 位作者 胡文庆 罗平章 李青珏 《中国农村水利水电》 北大核心 2024年第4期193-198,204,共7页
针对水电机组难以利用实时监测数据对机组劣化状态进行有效评估,以及水电机组不同运行工况对运行状态指标趋势预测模型参数影响显著的问题,提出一种基于参数自适应支持向量回归机(SVR)、变分模态分解(VMD)和时间卷积网络(TCN)的水电机... 针对水电机组难以利用实时监测数据对机组劣化状态进行有效评估,以及水电机组不同运行工况对运行状态指标趋势预测模型参数影响显著的问题,提出一种基于参数自适应支持向量回归机(SVR)、变分模态分解(VMD)和时间卷积网络(TCN)的水电机组劣化趋势预测方法;首先按照功率和水头将机组运行工况细化为若干典型工况,在此基础上采用改进天鹰算法建立SVR模型,对各个工况下的预测参数进行寻优,建立起工况与最优参数的数据;再通过神经网络对工况和最优预测参数进行拟合,构建出映射两者复杂关系的非线性函数,然后将构建出的映射关系加入到传统的SVR中,实现适应于水电机组工况变化的自适应SVR健康模型;其次,根据健康模型输出的标准值和监测数据,计算出劣化趋势序列;最后,考虑到劣化趋势序列的非线性因素,建立了一个基于VMD-TCN的时间序列预测模型,以实现对劣化趋势的准确预测。并设计多组对比实验,验证所提出模型的精度更高,时间更快。 展开更多
关键词 水电机组 劣化趋势预测 参数自适应 支持向量回归机 变分模态分解 时间卷积网络
下载PDF
Application of Support Vector Machine to Predict 5-year Survival Status of Patients with Nasopharyngeal Carcinoma after Treatment
14
作者 华贻军 余舒 +5 位作者 洪明晃 杨晓伟 邱枋 郭灵 黄培钰 张国义 《The Chinese-German Journal of Clinical Oncology》 CAS 2006年第1期8-12,共5页
Objective: Support Vector Machine (SVM) is a machine-learning method, based on the principle of structural risk minimization, which performs well when applied to data outside the training set. In this paper, SVM wa... Objective: Support Vector Machine (SVM) is a machine-learning method, based on the principle of structural risk minimization, which performs well when applied to data outside the training set. In this paper, SVM was applied to predict 5-year survival status of patients with nasopharyngeal carcinoma (NPC) after treatment, we expect to find a new way for prognosis studies in cancer so as to assist right clinical decision for individual patient. Methods: Two modelling methods were used in the study; SVM network and a standard parametric logistic regression were used to model 5-year survival status. And the two methods were compared on a prospective set of patients not used in model construction via receiver operating characteristic (ROC) curve analysis. Results: The SVM1, trained with the 25 original input variables without screening, yielded a ROC area of 0.868, at sensitivity to mortality of 79.2% and the specificity of 94.5%. Similarly, the SVM2, trained with 9 input variables which were obtained by optimal input variable selection from the 25 original variables by logistic regression screening, yielded a ROC area of 0.874, at a sensitivity to mortality of 79.2% and the specificity of 95.6%, while the logistic regression yielded a ROC area of 0.751 at a sensitivity to mortality of 66.7% and gave a specificity of 83.5%. Conclusion: SVM found a strong pattern in the database predictive of 5-year survival status. The logistic regression produces somewhat similar, but better, results. These results show that the SVM models have the potential to predict individual patient's 5-year survival status after treatment, and to assist the clinicians for making a good clinical decision. 展开更多
关键词 support vector machine logistic regression nasopharyngeal carcinoma predictive model RADIOTHERAPY ROC curve
下载PDF
基于PSO-SVR模型预测粮食孔隙率
15
作者 陈家豪 郑倩茹 +3 位作者 金立兵 郑德乾 尹君 李嘉欣 《粮食与油脂》 北大核心 2024年第6期55-59,共5页
利用自制粮食孔隙率测定仪,采用直接测量法对不同受压状态下的粮食单元体孔隙率进行测量,得到不同粮种、不同含水率和不同压力下的粮食单元体孔隙率。通过粒子群算法(PSO)优化支持向量回归(SVR),建立基于PSO-SVR粮食单元体孔隙率的预测... 利用自制粮食孔隙率测定仪,采用直接测量法对不同受压状态下的粮食单元体孔隙率进行测量,得到不同粮种、不同含水率和不同压力下的粮食单元体孔隙率。通过粒子群算法(PSO)优化支持向量回归(SVR),建立基于PSO-SVR粮食单元体孔隙率的预测模型,并与随机森林(RF)模型、SVR模型对比分析其性能。结果表明:PSO-SVR模型的各项性能指标均优于RF模型和SVR模型。PSO-SVR模型测试样本的均方误差(MSE)为0.0660、决定系数(R^(2))为0.9340、平均绝对误差(MAE)为0.2000,相较其他2种模型,该模型的预测结果误差小,具有较高的预测精度,可以有效预测粮食在不同压力下的孔隙率。 展开更多
关键词 粮食 孔隙率 机器学习 粒子群算法 支持向量回归
下载PDF
基于HSA-SVR的压电式车削测力仪多维力解耦
16
作者 张军 蔡佳乐 +3 位作者 王郁赫 滕玄德 张鹏 王尊豪 《仪表技术与传感器》 CSCD 北大核心 2024年第6期26-29,36,共5页
文中针对压电式多维力测力仪向间干扰大,制约测量精度的问题,分析了向间干扰对测力仪测量精度的影响,提出了一种基于支持向量回归机(SVR)的非线性解耦算法。利用混合模拟退火算法(HSA)对SVR进行参数寻优,对比并分析了HSA-SVR和线性最小... 文中针对压电式多维力测力仪向间干扰大,制约测量精度的问题,分析了向间干扰对测力仪测量精度的影响,提出了一种基于支持向量回归机(SVR)的非线性解耦算法。利用混合模拟退火算法(HSA)对SVR进行参数寻优,对比并分析了HSA-SVR和线性最小二乘解耦法(LS)的解耦性能,证明经该方法解耦后向间干扰最大为0.526%,非线性误差最大为0.214%,HSA-SVR具有更好的非线性解耦效果。 展开更多
关键词 压电测力仪 多维力测量 支持向量回归机 非线性解耦方法 融合算法
下载PDF
基于SARIMA和SVR组合模型的转向架系统寿命评估
17
作者 师蔚 范乔 +2 位作者 杨洋 胡定玉 廖爱华 《铁道机车车辆》 北大核心 2024年第1期157-163,共7页
随着地铁运营时间和里程的增加,地铁车辆逐渐接近其理论寿命,为确保车辆运行安全性,需对其重要子系统进行健康状态及剩余寿命评估。文中选取车辆转向架系统作为研究对象,提出了一种基于协方差优选法的季节性回归移动平均(SARIMA)和支持... 随着地铁运营时间和里程的增加,地铁车辆逐渐接近其理论寿命,为确保车辆运行安全性,需对其重要子系统进行健康状态及剩余寿命评估。文中选取车辆转向架系统作为研究对象,提出了一种基于协方差优选法的季节性回归移动平均(SARIMA)和支持向量回归(SVR)的组合模型对转向架寿命进行评估。首先,将车辆转向架系统历史故障率转化为健康指数,然后基于协方差优选法将SARIMA和SVR进行赋权组合,根据转向架系统历史健康指数进行预测,最后建立历史和预测的健康指数与运行时间的数学模型,分析得到转向架系统的剩余寿命。以某地铁车辆转向架系统为例进行算例分析及验证,结果表明组合模型可更准确地预测其健康状态,为有关维修部门开展维修维护策略提供理论依据,估计得出其剩余寿命,为车辆寿命后期退役及延寿决策提供理论数据分析支撑。 展开更多
关键词 转向架系统 寿命预测 季节性回归移动平均和支持向量回归(SARIMA和svr) 组合模型 协方差优选法
下载PDF
基于SARIMA-SVR模型的铁路货运量预测方法
18
作者 钱名军 李明鲡 黄鑫 《铁道运输与经济》 北大核心 2024年第9期83-94,共12页
鉴于铁路货运量受多种外部因素影响呈现显著的随机波动特征而难以准确预测,提出了SARIMA-SVR预测模型。首先,对全国铁路月度货运量序列进行季节时间序列(SARIMA)建模,得到模型的初始预测值及预测残差。其次,构建支持向量机(SVR)回归预... 鉴于铁路货运量受多种外部因素影响呈现显著的随机波动特征而难以准确预测,提出了SARIMA-SVR预测模型。首先,对全国铁路月度货运量序列进行季节时间序列(SARIMA)建模,得到模型的初始预测值及预测残差。其次,构建支持向量机(SVR)回归预测模型,将影响铁路货运量的外部因素作为模型输入项,SARIMA模型预测残差序列、月度货运量序列分别作为模型输出项,由此分别获得SARIMA模型预测残差的优化值以及SVR模型的货运量预测值。三是将优化后的SARIMA模型预测残差与其初始预测值相加,得到优化后的SARIMA模型预测值。四是再对优化后的SARIMA模型预测值和SVR模型预测值进行加权求和,得到SARIMA-SVR模型的预测结果。最后,对SARIMA-SVR模型进行消融实验验证模型有效性,并将该模型与经典预测模型进行测算精度对比。结果表明,SARIMA-SVR模型的预测精度优于单一模型和经典预测模型,在货运量预测方面具有良好的适用性。 展开更多
关键词 铁路运输 货运量预测 SARIMA-svr模型 季节性时间序列 支持向量机
下载PDF
基于InSAR监测和PSO-SVR模型的高填方区沉降预测
19
作者 李华蓉 戴双璘 郑嘉欣 《中国地质灾害与防治学报》 CSCD 2024年第2期127-136,共10页
基于小基线集干涉测量技术(small baseline subsets interferometric synthetic aperture radar,SBAS-InSAR)和机器学习知识对高填方区域进行地表沉降监测及预测,对工程项目的施工、检修、运营等工作都具有重要的指导意义。文章以重庆... 基于小基线集干涉测量技术(small baseline subsets interferometric synthetic aperture radar,SBAS-InSAR)和机器学习知识对高填方区域进行地表沉降监测及预测,对工程项目的施工、检修、运营等工作都具有重要的指导意义。文章以重庆东港集装箱码头为研究对象,选取2018—2019年覆盖研究区的31景Sentinel-1A数据,利用SBAS-InSAR技术获取该区域的地表沉降数据,并进行内外精度评定;通过信息量模型分析地表沉降易发地地势特点,选择预测点位;通过灰色关联分析计算动态影响因素与沉降量之间的灰色关联度,使用主成分分析法从影响因素中提取出主成分,构建训练集和测试集,通过粒子群算法-支持向量机法(particle swarm optimization-support vector regression,PSO-SVR)预测模型对测试集数据进行预测。为验证该模型在高填方区域沉降预测的可靠性和优异性,将自回归差分整合移动平均模型(autoregressive integrated moving average model,ARIMA)作为对比模型,分别将PSO-SVR模型的预测结果和ARIMA模型的预测结果与测试集进行对比。结果表明:PSO-SVR模型的预测精度优于ARIMA模型,在高填方区域地表沉降预测中具有较好的实用性。 展开更多
关键词 高填方区域 粒子群算法 支持向量机回归 形变预测
下载PDF
Endpoint Prediction of EAF Based on Multiple Support Vector Machines 被引量:12
20
作者 YUAN Ping MAO Zhi-zhong WANG Fu-li 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2007年第2期20-24,29,共6页
The endpoint parameters are very important to the process of EAF steel-making, but their on-line measurement is difficult. The soft sensor technology is widely used for the prediction of endpoint parameters. Based on ... The endpoint parameters are very important to the process of EAF steel-making, but their on-line measurement is difficult. The soft sensor technology is widely used for the prediction of endpoint parameters. Based on the analysis of the smelting process of EAF and the advantages of support vector machines, a soft sensor model for predicting the endpoint parameters was built using multiple support vector machines (MSVM). In this model, the input space was divided by subtractive clustering and a sub-model based on LS-SVM was built in each sub-space. To decrease the correlation among the sub-models and to improve the accuracy and robustness of the model, the sub- models were combined by Principal Components Regression. The accuracy of the soft sensor model is perfectly improved. The simulation result demonstrates the practicability and efficiency of the MSVM model for the endpoint prediction of EAF. 展开更多
关键词 endpoint prediction EAF soft sensor model multiple support vector machine (MSVM) principal components regression (PCR)
下载PDF
上一页 1 2 108 下一页 到第
使用帮助 返回顶部