期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
联合改进核FCM与智能优化SVR的WSNs链路质量预测 被引量:3
1
作者 刘洲洲 李士宁 +1 位作者 张筱 郭文强 《电子学报》 EI CAS CSCD 北大核心 2018年第1期90-97,共8页
为提高无线传感器网络(WSNs)链路质量预测精度和降低噪声影响,提出了一种联合改进核FCM与智能优化SVR(improved kernel furry c-means and intelligent support vector regression,IKFCM-ISVR)的WSNs链路质量预测方案.首先将基于紧致度... 为提高无线传感器网络(WSNs)链路质量预测精度和降低噪声影响,提出了一种联合改进核FCM与智能优化SVR(improved kernel furry c-means and intelligent support vector regression,IKFCM-ISVR)的WSNs链路质量预测方案.首先将基于紧致度和离散度的有效性指数引入核FCM方法,实现样本集聚类个数自动划分;然后采用改进核FCM方法对链路质量样本数据进行处理,获得样本聚类隶属度;在此基础上,构建群居蜘蛛优化SVR预测模型,采用基于"动态折射"学习机制的群集蜘蛛对模型参数进行优化,得到不同聚类最佳SVR参数组合;最后采用IKFCM-ISVR算法对不同实验场景下的WSNs链路数据进行预测评估.仿真结果表明,同其它预测算法相比,该算法预测精度提高了36.8~68.4%. 展开更多
关键词 链路质量预测 核模糊C-均值聚类 支持向量回归(svr) 群居蜘蛛优化
下载PDF
基于IKFCM与多模态SSO优化SVR的光伏发电短期预测 被引量:23
2
作者 黄予春 曹成涛 顾海 《电力系统保护与控制》 EI CSCD 北大核心 2018年第24期96-103,共8页
为提高短期光伏发电功率预测精度和降低气候等因素对预测结果的影响,提出了一种基于IKFCM与多模态SSO优化SVR的光伏发电功率短期预测方案。首先采用改进的KFCM(Improved KFCM, IKFCM)聚类方法对训练样本集进行处理,通过引入紧致离散聚... 为提高短期光伏发电功率预测精度和降低气候等因素对预测结果的影响,提出了一种基于IKFCM与多模态SSO优化SVR的光伏发电功率短期预测方案。首先采用改进的KFCM(Improved KFCM, IKFCM)聚类方法对训练样本集进行处理,通过引入紧致离散聚类有效性指数,在提高IKFCM聚类准确率的同时实现了自动划分训练样本集,有效降低了样本数据差异对预测性能的影响。然后构建与训练样本集分类一一对应的SVR预测模型,并采用多模态SSO优化(Multi-mode SSO, MSSO)算法对SVR模型参数进行优化,进而得到不同分类的最优SVR参数组合。最后,运用MSSO优化SVR模型对测试数据进行预测评估。仿真结果表明,该方案实现了不同天气下短期光伏发电功率准确预测,而且同其他预测算法相比预测精度提高了25.2%~37.8%。 展开更多
关键词 光伏发电功率 核模糊C-均值聚类 群居蜘蛛优化 支持向量回归(svr)
下载PDF
考虑时序特征的污染物数据异常检测及恢复 被引量:2
3
作者 陆秋琴 王璐 黄光球 《安全与环境学报》 CAS CSCD 北大核心 2023年第12期4590-4599,共10页
针对气体传感器数据采集过程中可能出现数据失真、数据重复的现象,提出一种基于时间序列滑动窗口的异常检测方法。基于滑动窗口将原始时间序列分割成多个子序列,利用斜率的置信区间距离半径提取子序列时序特征并识别疑似异常序列,再通... 针对气体传感器数据采集过程中可能出现数据失真、数据重复的现象,提出一种基于时间序列滑动窗口的异常检测方法。基于滑动窗口将原始时间序列分割成多个子序列,利用斜率的置信区间距离半径提取子序列时序特征并识别疑似异常序列,再通过时间序列分解与基于密度的噪声应用空间聚类方法(Density-based Spatial Clustering of Applications with Noise,DBSCAN)进一步判定异常值。以某区域挥发性有机物(Volatile Organic Compounds,VOCs)数据作为验证数据集,检测结果表明该算法能够准确识别异常子序列和异常值,精确率、查全率以及平衡F分数(F_(1))分别为93.7%、90.7%和92.18%,验证了提出方法的可用性。同时,针对异常为缺失值的情况,提出了一种基于支持向量机回归(Support Vector Regression,SVR)的恢复模型,经验证决定系数R^(2)为96.53%,优于对比模型。 展开更多
关键词 环境工程学 挥发性有机物(VOCs) 滑动窗口算法(Sliding_Window) 时间序列分解 基于密度的噪声应用空间聚类方法(DBSCAN) 支持向量机回归(svr)
下载PDF
新的稀疏支持向量回归机算法及实验研究 被引量:4
4
作者 陈晓峰 王士同 +1 位作者 曹苏群 马培勇 《计算机工程与应用》 CSCD 北大核心 2008年第36期24-28,共5页
支持向量回归机是一种解决回归问题的重要方法,其预测速度与支持向量的稀疏性成正比。为了改进支持向量回归机的稀疏性,提出了一种直接稀疏支持向量回归算法DSKR(Direct Sparse Kernel Support Vector Regression),用于构造稀疏性支持... 支持向量回归机是一种解决回归问题的重要方法,其预测速度与支持向量的稀疏性成正比。为了改进支持向量回归机的稀疏性,提出了一种直接稀疏支持向量回归算法DSKR(Direct Sparse Kernel Support Vector Regression),用于构造稀疏性支持向量回归机。DSKR算法对ε-SVR(ε-Support Vector Regression)增加一个非凸约束,通过迭代优化的方式,得到稀疏性好的支持向量回归机。在人工数据集和真实世界数据集上研究DSKR算法的性能,实验结果表明,DSKR算法可以通过调控支持向量的数目,提高支持向量回归机的稀疏性,且具有较好的鲁棒性。 展开更多
关键词 支持向量回归机 核方法 稀疏核学习
下载PDF
一种支持向量回归的局部邻域稀疏化方法
5
作者 赵汗青 《火力与指挥控制》 CSCD 北大核心 2008年第S2期29-32,共4页
调整高斯核函数参数可以改变其VC维,通过密度聚类算法发现并分离全局中非线性复杂度不同的局部特征,以支持向量比率为优化指标确定满足局部稀疏条件的核函数,从而达到优化核函数选择以提高整体回归稀疏性的目的。
关键词 支持向量回归 稀疏性 核密度聚类
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部