为提高无线传感器网络(WSNs)链路质量预测精度和降低噪声影响,提出了一种联合改进核FCM与智能优化SVR(improved kernel furry c-means and intelligent support vector regression,IKFCM-ISVR)的WSNs链路质量预测方案.首先将基于紧致度...为提高无线传感器网络(WSNs)链路质量预测精度和降低噪声影响,提出了一种联合改进核FCM与智能优化SVR(improved kernel furry c-means and intelligent support vector regression,IKFCM-ISVR)的WSNs链路质量预测方案.首先将基于紧致度和离散度的有效性指数引入核FCM方法,实现样本集聚类个数自动划分;然后采用改进核FCM方法对链路质量样本数据进行处理,获得样本聚类隶属度;在此基础上,构建群居蜘蛛优化SVR预测模型,采用基于"动态折射"学习机制的群集蜘蛛对模型参数进行优化,得到不同聚类最佳SVR参数组合;最后采用IKFCM-ISVR算法对不同实验场景下的WSNs链路数据进行预测评估.仿真结果表明,同其它预测算法相比,该算法预测精度提高了36.8~68.4%.展开更多
文摘为提高无线传感器网络(WSNs)链路质量预测精度和降低噪声影响,提出了一种联合改进核FCM与智能优化SVR(improved kernel furry c-means and intelligent support vector regression,IKFCM-ISVR)的WSNs链路质量预测方案.首先将基于紧致度和离散度的有效性指数引入核FCM方法,实现样本集聚类个数自动划分;然后采用改进核FCM方法对链路质量样本数据进行处理,获得样本聚类隶属度;在此基础上,构建群居蜘蛛优化SVR预测模型,采用基于"动态折射"学习机制的群集蜘蛛对模型参数进行优化,得到不同聚类最佳SVR参数组合;最后采用IKFCM-ISVR算法对不同实验场景下的WSNs链路数据进行预测评估.仿真结果表明,同其它预测算法相比,该算法预测精度提高了36.8~68.4%.