Planet gear systems(PGSs)are key components of transmission mechanisms.Structural and material characteristics of gearbox and shaft can affect the support stiffness and vibrations of PGSs.The ring gear flexibility sho...Planet gear systems(PGSs)are key components of transmission mechanisms.Structural and material characteristics of gearbox and shaft can affect the support stiffness and vibrations of PGSs.The ring gear flexibility should affect the vibrations of PGSs too.However,most previous work did not completely consider the effects of the ring gear flexibility on the vibrations of PGSs and flexible supports of ring and sun gears.Thus,this paper presents a flexible-rigid coupling multi-body dynamic(FMBD)model for a PGS with the flexible supports and ring gear flexibility.A finite element model of ring gear is established to formulate the ring gear flexibility.The influences of clearance and damping of planet bearings on the vibrations of PGS are considered.The effects of flexible supports and ring gear flexibility on the vibrations of PGS under different moment and speed conditions are studied.The statistical parameters and peak frequencies of PGS from the proposed FMBD and previous rigid multi-body dynamic(RMBD)models are compared.The results denote that the flexible support has a great effect on the vibrations of PGS.This paper can provide some guidance for the support structure design and vibration control for PGSs.展开更多
T-joint titanium alloy structures are commonly used in aircraft manufacturing,and their laser welding process is relatively mature,but due to the strict requirements of the airplane production,the angular deformation ...T-joint titanium alloy structures are commonly used in aircraft manufacturing,and their laser welding process is relatively mature,but due to the strict requirements of the airplane production,the angular deformation caused by uneven heat input across the sheet is still not negligible,so active control needs to be imposed.In this paper,an active deformation control method based on programmable multi-point flexible support is proposed and validated.In response to the problem that the traditional rigid clamping and pre-stressing are not adapted to the T-structure thin sheet,this study has designed a multi-point flexible support with microcontroller and electric actuators,which can monitor the stress state of the current support position in real time during the welding process and make dynamic adjustment,so that the weld deformation could be effectively reduced in this way.展开更多
In Tokomak, the support of the ELM coil, which is close to the plasma and subject to high radiation level, high temperature and high magnetic field, is used to transport and bear the thermal load due to thermal expans...In Tokomak, the support of the ELM coil, which is close to the plasma and subject to high radiation level, high temperature and high magnetic field, is used to transport and bear the thermal load due to thermal expansion and the alternating electromagnetic force generated by high magnetic field and AC current in the coil. According to the feature of ITER ELM coil, the mechanical performance of rigid and flexible supports under different high nuclear heat levels is studied. Results show that flexible supports have more excellent performance in high nuclear heat condition than rigid supports. Concerning thermal and electromagnetic (EM) loads, optimized results further prove that flexible supports have better mechanical performance than rigid ones. Through these studies, reasonable support design can be provided for the ELM coils or similar coils in Tokamak based on the nuclear heat level.展开更多
In a fusion reactor, the edge localized mode(ELM) coil has a mitigating effect on the ELMs of the plasma. The coil is placed close to the plasma between the vacuum vessel and the blanket to reduce its design power a...In a fusion reactor, the edge localized mode(ELM) coil has a mitigating effect on the ELMs of the plasma. The coil is placed close to the plasma between the vacuum vessel and the blanket to reduce its design power and improve its mitigating ability. The coil works in a high-temperature,high-nuclear-heat and high-magnetic-field environment. Due to the existence of outer superconducting coils, the coil is subjected to an alternating electromagnetic force induced by its own alternating current and the outer magnetic field. The design goal for the ELM coil is to maintain its structural integrity in the multi-physical field. Taking as an example the middle ELM coil(with flexible supports) of ITER(the International Thermonuclear Fusion Reactor), an electromagnetic–thermal–structural coupling analysis is carried out using ANSYS. The results show that the flexible supports help the three-layer casing meet the static and fatigue design requirements. The structural design of the middle ELM coil is reasonable and feasible. The work described in this paper provides the theoretical basis and method for ELM coil design.展开更多
Taking a three-cable flexible photovoltaic(PV)support structure as the research subject,a finite element model was established.Utilizing a full-order flutter analysis method,the flutter critical wind speed and flutter...Taking a three-cable flexible photovoltaic(PV)support structure as the research subject,a finite element model was established.Utilizing a full-order flutter analysis method,the flutter critical wind speed and flutter frequency of the flexible PV support structure at a tilt angle of 0°were calculated.The results showed good agreement with wind tunnel test data.Further analysis examined the pretension effects in the load-bearing and stabilizing cables on the natural frequency and flutter critical wind speed of the flexible PV support structure.The research findings indicate increasing the pretension in the load-bearing cables significantly raises the natural frequencies of the first four modes.Specifically,as the pretension in the load-bearing cables increases from 22 to 102 kN,the flutter critical wind speed rises from 17.1 to 21.6 m/s.By contrast,the pretension in the stabilizing cable has a smaller effect on the natural frequency and flutter critical wind speed of the flexible PV support structure.When the pretension in the stabilizing cable increased from 22 to 102 kN,the flutter critical wind speed increased from 17.1 to 17.7 m/s.For wind-resistant design of flexible PV support structures,it is recommended to prioritize increasing the pretension in the load-bearing cables to enhance the structural flutter performance.展开更多
The current research on gear system dynamics mainly utilizes linear spring damping model to calculate the contact force between gears. However, this linear model cannot correctly describe the energy transfer process o...The current research on gear system dynamics mainly utilizes linear spring damping model to calculate the contact force between gears. However, this linear model cannot correctly describe the energy transfer process of collision that often occurs in gear system. Focus on the contact-impact events, this paper proposes an improved gear contact force model for dynamic analysis in helical gear transmission system. In this model, a new factor associated with hysteresis damping is developed for contact-impact state, whereas the traditional linear damping factor is utilized for normal meshing state. For determining the selection strategy of these two damping factors, the fundamental contact mechanics of contact-impact event a ected by supporting forces are analyzed. During this analysis, an e ect factor is proposed for evaluating the influence of supporting forces on collision. Meanwhile, a new restitution of coe cient is deduced for calculating hysteresis damping factor, which suitable for both separation and non-separation states at the end of collision. In addition, the time-varying meshing sti ness(TVMS) is obtained based on the potential energy approach and the slice theory. Finally, a dynamic analysis of a helical gear system is carried out to better understand the contact force model proposed in this paper. The analysis results show that the contribution of supporting forces to the dynamic response of contact-impact event within gear pair is important. The supporting forces and dissipative energy are the main reasons for gear system to enter a steady contact state from repeated contact-impact state. This research proposes an improved contact force model which distinguishes meshing and collision states in gear system.展开更多
Mosquitoes possess the striking ability to walk on water because each of their legs has a huge water supporting force(WSF) that is 23 times their body weight.Aiming at a full understanding of the origins of this ext...Mosquitoes possess the striking ability to walk on water because each of their legs has a huge water supporting force(WSF) that is 23 times their body weight.Aiming at a full understanding of the origins of this extremely large force,in this study,we concentrate on two aspects of it:the intrinsic properties of the leg surface and the active control of the initial stepping angle of the whole leg.Using a measurement system that we developed ourselves,the WSFs for the original leg samples are compared with those whose surface wax and microstructures have been removed and with those of a different stiffness.The results show that leg f exibility plays a dominant role over surface wax and microstructures on the leg surface in creating the supporting force.Moreover,we discuss the dependence relationship between the maximum WSF and the initial stepping angle,which indicates that the mosquito can regulate this angle to increase or decrease the WSF during landing or takeoff.These finding are helpful for uncovering the locomotion mechanism of aquatic insects and for providing inspiration for the design of microfluids miniature boats,biomimetic robots,and microsensors.展开更多
In modem society, flexible employment has become the important channel of improve employment. Workers who transfer into the flexible employment from regular employment easily lost the original endowment insurance righ...In modem society, flexible employment has become the important channel of improve employment. Workers who transfer into the flexible employment from regular employment easily lost the original endowment insurance rights and interests, which increase the cost of laborer to flexible employment and impede the development of flexible employment. The establishment of the endowment insurance system of flexible employment can eliminate the apprehension of supporting themselves and enjoy in old age well.展开更多
Thin-walled parts are widely used in the aerospace industry owing to their light weight and high specific strength.However,due to the low rigidity of thin-walled parts,elastic deformation and chatter easily occur,whic...Thin-walled parts are widely used in the aerospace industry owing to their light weight and high specific strength.However,due to the low rigidity of thin-walled parts,elastic deformation and chatter easily occur,which seriously affect the machining accuracy and workpiece surface quality.To solve this problem,several supporting technologies have been reported in recent years.This paper reviews the recent research progress of flexible supporting technologies in the aerospace field by classifying them based on different principles and characteristics.The principle,progress,advantages,and limitations of the technologies are expounded by systematic comparison and summarized.Finally,the challenges and future development trends of flexible supporting technology,which will provide guidelines for further research,are discussed.展开更多
基金Projects(51605051,51975068)supported by the National Natural Science Foundation of China。
文摘Planet gear systems(PGSs)are key components of transmission mechanisms.Structural and material characteristics of gearbox and shaft can affect the support stiffness and vibrations of PGSs.The ring gear flexibility should affect the vibrations of PGSs too.However,most previous work did not completely consider the effects of the ring gear flexibility on the vibrations of PGSs and flexible supports of ring and sun gears.Thus,this paper presents a flexible-rigid coupling multi-body dynamic(FMBD)model for a PGS with the flexible supports and ring gear flexibility.A finite element model of ring gear is established to formulate the ring gear flexibility.The influences of clearance and damping of planet bearings on the vibrations of PGS are considered.The effects of flexible supports and ring gear flexibility on the vibrations of PGS under different moment and speed conditions are studied.The statistical parameters and peak frequencies of PGS from the proposed FMBD and previous rigid multi-body dynamic(RMBD)models are compared.The results denote that the flexible support has a great effect on the vibrations of PGS.This paper can provide some guidance for the support structure design and vibration control for PGSs.
基金supported by the National Natural Science Foundation of China(Grant No.52275304 and 51975014).
文摘T-joint titanium alloy structures are commonly used in aircraft manufacturing,and their laser welding process is relatively mature,but due to the strict requirements of the airplane production,the angular deformation caused by uneven heat input across the sheet is still not negligible,so active control needs to be imposed.In this paper,an active deformation control method based on programmable multi-point flexible support is proposed and validated.In response to the problem that the traditional rigid clamping and pre-stressing are not adapted to the T-structure thin sheet,this study has designed a multi-point flexible support with microcontroller and electric actuators,which can monitor the stress state of the current support position in real time during the welding process and make dynamic adjustment,so that the weld deformation could be effectively reduced in this way.
文摘In Tokomak, the support of the ELM coil, which is close to the plasma and subject to high radiation level, high temperature and high magnetic field, is used to transport and bear the thermal load due to thermal expansion and the alternating electromagnetic force generated by high magnetic field and AC current in the coil. According to the feature of ITER ELM coil, the mechanical performance of rigid and flexible supports under different high nuclear heat levels is studied. Results show that flexible supports have more excellent performance in high nuclear heat condition than rigid supports. Concerning thermal and electromagnetic (EM) loads, optimized results further prove that flexible supports have better mechanical performance than rigid ones. Through these studies, reasonable support design can be provided for the ELM coils or similar coils in Tokamak based on the nuclear heat level.
基金the Province Postdoctoral Foundation of Jiangsu(1501164B)the Technical Innovation Nurturing Foundation of Yangzhou University(2015CXJ016)China Postdoctoral Science Foundation(2016M600447)
文摘In a fusion reactor, the edge localized mode(ELM) coil has a mitigating effect on the ELMs of the plasma. The coil is placed close to the plasma between the vacuum vessel and the blanket to reduce its design power and improve its mitigating ability. The coil works in a high-temperature,high-nuclear-heat and high-magnetic-field environment. Due to the existence of outer superconducting coils, the coil is subjected to an alternating electromagnetic force induced by its own alternating current and the outer magnetic field. The design goal for the ELM coil is to maintain its structural integrity in the multi-physical field. Taking as an example the middle ELM coil(with flexible supports) of ITER(the International Thermonuclear Fusion Reactor), an electromagnetic–thermal–structural coupling analysis is carried out using ANSYS. The results show that the flexible supports help the three-layer casing meet the static and fatigue design requirements. The structural design of the middle ELM coil is reasonable and feasible. The work described in this paper provides the theoretical basis and method for ELM coil design.
基金The National Natural Science Foundation of China(No.52338011,52208481),China Postdoctoral Science Foundation(No.2023M730581).
文摘Taking a three-cable flexible photovoltaic(PV)support structure as the research subject,a finite element model was established.Utilizing a full-order flutter analysis method,the flutter critical wind speed and flutter frequency of the flexible PV support structure at a tilt angle of 0°were calculated.The results showed good agreement with wind tunnel test data.Further analysis examined the pretension effects in the load-bearing and stabilizing cables on the natural frequency and flutter critical wind speed of the flexible PV support structure.The research findings indicate increasing the pretension in the load-bearing cables significantly raises the natural frequencies of the first four modes.Specifically,as the pretension in the load-bearing cables increases from 22 to 102 kN,the flutter critical wind speed rises from 17.1 to 21.6 m/s.By contrast,the pretension in the stabilizing cable has a smaller effect on the natural frequency and flutter critical wind speed of the flexible PV support structure.When the pretension in the stabilizing cable increased from 22 to 102 kN,the flutter critical wind speed increased from 17.1 to 17.7 m/s.For wind-resistant design of flexible PV support structures,it is recommended to prioritize increasing the pretension in the load-bearing cables to enhance the structural flutter performance.
基金Supported by National Natural Science Foundation of China(Grant No.51475263)
文摘The current research on gear system dynamics mainly utilizes linear spring damping model to calculate the contact force between gears. However, this linear model cannot correctly describe the energy transfer process of collision that often occurs in gear system. Focus on the contact-impact events, this paper proposes an improved gear contact force model for dynamic analysis in helical gear transmission system. In this model, a new factor associated with hysteresis damping is developed for contact-impact state, whereas the traditional linear damping factor is utilized for normal meshing state. For determining the selection strategy of these two damping factors, the fundamental contact mechanics of contact-impact event a ected by supporting forces are analyzed. During this analysis, an e ect factor is proposed for evaluating the influence of supporting forces on collision. Meanwhile, a new restitution of coe cient is deduced for calculating hysteresis damping factor, which suitable for both separation and non-separation states at the end of collision. In addition, the time-varying meshing sti ness(TVMS) is obtained based on the potential energy approach and the slice theory. Finally, a dynamic analysis of a helical gear system is carried out to better understand the contact force model proposed in this paper. The analysis results show that the contribution of supporting forces to the dynamic response of contact-impact event within gear pair is important. The supporting forces and dissipative energy are the main reasons for gear system to enter a steady contact state from repeated contact-impact state. This research proposes an improved contact force model which distinguishes meshing and collision states in gear system.
基金supported by the National Natural Science Foundation of China (Grants 11302093,11302094 and 11272357)the Natural Science Fund for Distinguished Young Scholars of Shandong Province (JQ201302)
文摘Mosquitoes possess the striking ability to walk on water because each of their legs has a huge water supporting force(WSF) that is 23 times their body weight.Aiming at a full understanding of the origins of this extremely large force,in this study,we concentrate on two aspects of it:the intrinsic properties of the leg surface and the active control of the initial stepping angle of the whole leg.Using a measurement system that we developed ourselves,the WSFs for the original leg samples are compared with those whose surface wax and microstructures have been removed and with those of a different stiffness.The results show that leg f exibility plays a dominant role over surface wax and microstructures on the leg surface in creating the supporting force.Moreover,we discuss the dependence relationship between the maximum WSF and the initial stepping angle,which indicates that the mosquito can regulate this angle to increase or decrease the WSF during landing or takeoff.These finding are helpful for uncovering the locomotion mechanism of aquatic insects and for providing inspiration for the design of microfluids miniature boats,biomimetic robots,and microsensors.
文摘In modem society, flexible employment has become the important channel of improve employment. Workers who transfer into the flexible employment from regular employment easily lost the original endowment insurance rights and interests, which increase the cost of laborer to flexible employment and impede the development of flexible employment. The establishment of the endowment insurance system of flexible employment can eliminate the apprehension of supporting themselves and enjoy in old age well.
基金supported by National Natural Science Foundation of China(No.51975096,No.51905075)China Postdoctoral Science Foundation(No.2019M661090)Liao Ning Revitalization Talents Program(No.XLYC1807230)。
文摘Thin-walled parts are widely used in the aerospace industry owing to their light weight and high specific strength.However,due to the low rigidity of thin-walled parts,elastic deformation and chatter easily occur,which seriously affect the machining accuracy and workpiece surface quality.To solve this problem,several supporting technologies have been reported in recent years.This paper reviews the recent research progress of flexible supporting technologies in the aerospace field by classifying them based on different principles and characteristics.The principle,progress,advantages,and limitations of the technologies are expounded by systematic comparison and summarized.Finally,the challenges and future development trends of flexible supporting technology,which will provide guidelines for further research,are discussed.