An account of recent work on supported single‐atom catalyst design is given here for reactions as diverse as the low‐temperature water‐gas shift,methanol steam reforming,selective ethanol dehydrogenation,and select...An account of recent work on supported single‐atom catalyst design is given here for reactions as diverse as the low‐temperature water‐gas shift,methanol steam reforming,selective ethanol dehydrogenation,and selective hydrogenation of alkynes and dienes.It is of fundamental interest to investigate the intrinsic activity and selectivity of the active metal atom site and compare them to the properties of the corresponding metal nanoparticles and sub‐nm clusters.It is also important to understand what constitutes a stable active metal atom site in the various reaction environments,and maximize their loadings to allow us to design robust catalysts for industrial applications.Combined activity and stability studies,ideally following the evolution of the active site as a function of catalyst treatment in real time are recommended.Advanced characterization methods with atomic resolution will play a key role here and will be used to guide the design of new catalysts.展开更多
Three-dimensionally ordered mesoporous Fe2O3(meso-Fe2O3) and its supported Au, Pd,and Au-Pd alloy(xA uP dy/meso-Fe2O3; x = 0.08–0.72 wt.%; Pd/Au molar ratio(y) = 1.48–1.85)photocatalysts have been prepared via...Three-dimensionally ordered mesoporous Fe2O3(meso-Fe2O3) and its supported Au, Pd,and Au-Pd alloy(xA uP dy/meso-Fe2O3; x = 0.08–0.72 wt.%; Pd/Au molar ratio(y) = 1.48–1.85)photocatalysts have been prepared via the KIT-6-templating and polyvinyl alcohol-protected reduction routes, respectively. Physical properties of the samples were characterized, and their photocatalytic activities were evaluated for the photocatalytic oxidation of acetone in the presence of a small amount of H2O2 under visible-light illumination. It was found that the meso-Fe2O3 was rhombohedral in crystal structure. The as-obtained samples displayed a high surface area of 111.0–140.8 m^2/g and a bandgap energy of 1.98–2.12 eV. The Au, Pd and/or Au–Pd alloy nanoparticles(NPs) with a size of 3–4 nm were uniformly dispersed on the surface of the meso-Fe2O3 support. The 0.72 wt.% AuP d1.48/meso-Fe2O3 sample performed the best in the presence of 0.06 mol/L H2O2 aqueous solution, showing a 100% acetone conversion within4 hr of visible-light illumination. It was concluded that the good performance of 0.72 wt.%AuPd(1.48)/meso-Fe2O3 for photocatalytic acetone oxidation was associated with its ordered mesoporous structure, high adsorbed oxygen species concentration, plasmonic resonance effect between AuPd(1.48) NPs and meso-Fe2O3, and effective separation of the photogenerated charge carriers. In addition, the introduction of H2O2 and the involvement of the photo-Fenton process also played important roles in enhancing the photocatalytic activity of 0.72 wt.%AuPd(1.48)/meso-Fe2O3.展开更多
α-MnO2 nanotubes and their supported Au-Pd alloy nanocatalysts were prepared using hydrothermal and polyvinyl alcohol-protected reduction methods, respectively. Their catalytic activity for the oxidation of toluene/m...α-MnO2 nanotubes and their supported Au-Pd alloy nanocatalysts were prepared using hydrothermal and polyvinyl alcohol-protected reduction methods, respectively. Their catalytic activity for the oxidation of toluene/m-xylene, acetone/ethyl acetate, acetone/m-xylene and ethyl acetate/m-xylene mixtures was evaluated. It was found that the interaction between Au-Pd alloy nanoparticles and α-MnO2 nanotubes significantly improved the reactivity of lattice oxygen, and the 0.91 wt.% Au0.48 Pd/α-MnO2 nanotube catalyst outperformed the α-MnO2 nanotube catalyst in the oxidation of toluene, m-xylene, ethyl acetate and acetone. Over the0.91 wt.% Au0.48 Pd/α-MnO2 nanotube catalyst,(i) toluene oxidation was greatly inhibited in the toluene/m-xylene mixture, while m-xylene oxidation was not influenced;(ii) acetone and ethyl acetate oxidation suffered a minor impact in the acetone/ethyl acetate mixture; and(iii) m-xylene oxidation was enhanced whereas the oxidation of the oxygenated VOCs(volatile organic compounds) was suppressed in the acetone/m-xylene or ethyl acetate/m-xylene mixtures. The competitive adsorption of these typical VOCs on the catalyst surface induced an inhibitive effect on their oxidation, and increasing the temperature favored the oxidation of the VOCs. The mixed VOCs could be completely oxidized into CO2 and H2 O below 320°C at a space velocity of 40,000 m L/(g·hr). The 0.91 wt.% Au0.48 Pd/α-MnO2 nanotube catalyst exhibited high catalytic stability as well as good tolerance to water vapor and CO2 in the oxidation of the VOC mixtures. Thus, the α-MnO2 nanotube-supported noble metal alloy catalysts hold promise for the efficient elimination of VOC mixtures.展开更多
基金financial support of the work by the U.S. Department of Energy (DOE), Office of Science, Basic Energy Sciences (BES), under Awards Grant Number DE-FG02-05ER15730
文摘An account of recent work on supported single‐atom catalyst design is given here for reactions as diverse as the low‐temperature water‐gas shift,methanol steam reforming,selective ethanol dehydrogenation,and selective hydrogenation of alkynes and dienes.It is of fundamental interest to investigate the intrinsic activity and selectivity of the active metal atom site and compare them to the properties of the corresponding metal nanoparticles and sub‐nm clusters.It is also important to understand what constitutes a stable active metal atom site in the various reaction environments,and maximize their loadings to allow us to design robust catalysts for industrial applications.Combined activity and stability studies,ideally following the evolution of the active site as a function of catalyst treatment in real time are recommended.Advanced characterization methods with atomic resolution will play a key role here and will be used to guide the design of new catalysts.
基金supported by the National Natural Science Foundation of China (No. 21377008)the National High Technology Research and Development Program of China ("863"Program)(No. 2015AA034603)the Foundation of the Creative Research Team Construction Promotion Project of Beijing Municipal Institutions
文摘Three-dimensionally ordered mesoporous Fe2O3(meso-Fe2O3) and its supported Au, Pd,and Au-Pd alloy(xA uP dy/meso-Fe2O3; x = 0.08–0.72 wt.%; Pd/Au molar ratio(y) = 1.48–1.85)photocatalysts have been prepared via the KIT-6-templating and polyvinyl alcohol-protected reduction routes, respectively. Physical properties of the samples were characterized, and their photocatalytic activities were evaluated for the photocatalytic oxidation of acetone in the presence of a small amount of H2O2 under visible-light illumination. It was found that the meso-Fe2O3 was rhombohedral in crystal structure. The as-obtained samples displayed a high surface area of 111.0–140.8 m^2/g and a bandgap energy of 1.98–2.12 eV. The Au, Pd and/or Au–Pd alloy nanoparticles(NPs) with a size of 3–4 nm were uniformly dispersed on the surface of the meso-Fe2O3 support. The 0.72 wt.% AuP d1.48/meso-Fe2O3 sample performed the best in the presence of 0.06 mol/L H2O2 aqueous solution, showing a 100% acetone conversion within4 hr of visible-light illumination. It was concluded that the good performance of 0.72 wt.%AuPd(1.48)/meso-Fe2O3 for photocatalytic acetone oxidation was associated with its ordered mesoporous structure, high adsorbed oxygen species concentration, plasmonic resonance effect between AuPd(1.48) NPs and meso-Fe2O3, and effective separation of the photogenerated charge carriers. In addition, the introduction of H2O2 and the involvement of the photo-Fenton process also played important roles in enhancing the photocatalytic activity of 0.72 wt.%AuPd(1.48)/meso-Fe2O3.
基金supported by the Natural Science Foundation of China(Nos.21622701,21477005,U1507108,and 21676028)National Key R&D Program of China(No.2016YFC0204800)+3 种基金Foundation for the Author of National Excellent Doctoral Dissertation of China(No.201462)Beijing Nova Program(No.Z141109001814106)Beijing Municipal Natural Science Foundation(No.2132015)Natural Science Foundation of Beijing Municipal Commission of Education(No.KM201410005008)
文摘α-MnO2 nanotubes and their supported Au-Pd alloy nanocatalysts were prepared using hydrothermal and polyvinyl alcohol-protected reduction methods, respectively. Their catalytic activity for the oxidation of toluene/m-xylene, acetone/ethyl acetate, acetone/m-xylene and ethyl acetate/m-xylene mixtures was evaluated. It was found that the interaction between Au-Pd alloy nanoparticles and α-MnO2 nanotubes significantly improved the reactivity of lattice oxygen, and the 0.91 wt.% Au0.48 Pd/α-MnO2 nanotube catalyst outperformed the α-MnO2 nanotube catalyst in the oxidation of toluene, m-xylene, ethyl acetate and acetone. Over the0.91 wt.% Au0.48 Pd/α-MnO2 nanotube catalyst,(i) toluene oxidation was greatly inhibited in the toluene/m-xylene mixture, while m-xylene oxidation was not influenced;(ii) acetone and ethyl acetate oxidation suffered a minor impact in the acetone/ethyl acetate mixture; and(iii) m-xylene oxidation was enhanced whereas the oxidation of the oxygenated VOCs(volatile organic compounds) was suppressed in the acetone/m-xylene or ethyl acetate/m-xylene mixtures. The competitive adsorption of these typical VOCs on the catalyst surface induced an inhibitive effect on their oxidation, and increasing the temperature favored the oxidation of the VOCs. The mixed VOCs could be completely oxidized into CO2 and H2 O below 320°C at a space velocity of 40,000 m L/(g·hr). The 0.91 wt.% Au0.48 Pd/α-MnO2 nanotube catalyst exhibited high catalytic stability as well as good tolerance to water vapor and CO2 in the oxidation of the VOC mixtures. Thus, the α-MnO2 nanotube-supported noble metal alloy catalysts hold promise for the efficient elimination of VOC mixtures.