To study the heavy hydrostatic bearing with multiple oil pads, a reasonably simplified model of the pad is put forward, and the mathematical model of the bearing characteristics of the multiple oil pad hydrostatic bea...To study the heavy hydrostatic bearing with multiple oil pads, a reasonably simplified model of the pad is put forward, and the mathematical model of the bearing characteristics of the multiple oil pad hydrostatic bearing is built with consideration of variable viscosity. The pressure field in the clearance oil film of the hydrostatic bearing at various velocities is simulated based on the Finite Volume Method (FVM) by using the software of Computational Fluid Dynamics (CFD). Some pressure experiments on the hydrostatic bearing were carried out and the results verified the rationality of the simplified model of the pad and the validity of the numerical simulation. It is concluded that the viscosity has a great influence on the pressure in the heavy hydrostatic bearing and cannot be neglected, especially, in cases of high rotating speed. The results of numerical calculations provide the internal flow states inside the bearing, which would help the design of the oil cavity structure of the bearing in engineering practice.展开更多
In order to improve the cutting stiffness,the paper studies the vertical hydrostatic bearing in the slide when a ram is in feed process.The change of the oil film thickness on hydrostatic guide rail and the curve of t...In order to improve the cutting stiffness,the paper studies the vertical hydrostatic bearing in the slide when a ram is in feed process.The change of the oil film thickness on hydrostatic guide rail and the curve of the oil film thickness in various cutting forces are calculated and a relation model through theoretical analysis method is derived.The pressure field of the guide rail recess is simulated based on the finite volume method and demonstrated through experiments.The study is of vital theoretical significance for the improvement of machining accuracy of numerical control machines and the entire computer numerical control(CNC) equipment and provides valuable theoretical basis for the design of hydrostatic guide rail in engineering practice.展开更多
Circumferential yielding lining is able to tolerate controlled displacements without failure,which has been proven to be an effective solution to large deformation problem in squeezing tunnels.However,up to now,there ...Circumferential yielding lining is able to tolerate controlled displacements without failure,which has been proven to be an effective solution to large deformation problem in squeezing tunnels.However,up to now,there has not been a well-established design method for it.This paper aims to present a detailed analytical computation of support characteristic curve(SCC)for circumferential yielding lining,which is a significant aspect of the implementation of convergence-confinement method(CCM)in tunnel support design.Circumferential yielding lining consists of segmental shotcrete linings and highly deformable elements,and its superior performance mainly depends on the mechanical characteristic of highly deformable element.The deformation behavior of highly deformable element is firstly investigated.Its whole deforming process can be divided into three stages including elastic,yielding and compaction stages.Especially in the compaction stage of highly deformable element,a nonlinear stress-strain relationship can be observed.For mathematical convenience,the stress-strain curve in this period is processed as several linear sub-curves.Then,the reasons for closure of circumferential yielding lining in different stages are explained,and the corresponding accurate equations required for constructing the SCC are provided.Furthermore,this paper carries out two case studies illustrating the application of all equations needed to construct the SCC for circumferential yielding lining,where the reliability and feasibility of theoretical derivation are also well verified.Finally,this paper discusses the sensitivity of sub-division in element compaction stage and the influence of element length on SCC.The outcome of this paper could be used in the design of proper circumferential yielding lining.展开更多
With the continuous increase in tunnel construction,the significant deformation of the surrounding tunnel rock is often difficult to predict and control.In addition,the lithology,structure,and various asymmetric large...With the continuous increase in tunnel construction,the significant deformation of the surrounding tunnel rock is often difficult to predict and control.In addition,the lithology,structure,and various asymmetric large deformation of surrounding rock mass during operation and maintenance severely affect the ultimate bearing and stability of the tunnel.To explore the deformation mechanisms and failure modes of surrounding rock under large asymmetric stress and complex geological conditions,a physical model of a tunnel through granite was constructed based on the similarity theory.The model had 30°dip lithology under asymmetric stress and was emplaced a new quasi-negative Poisson’s ratio(NPR)bolt.By analyzing the variation law of displacement and axial force of the bolt under an asymmetric load,the asymmetric deformation and failure mechanism of the granite tunnel and the support effect of the quasi-NPR bolt were determined.The energy absorbed by the surrounding rock was analyzed,and the influence mechanism and control countermeasures of asymmetric stress on the granite tunnel were explored.This work provides a reference for the design of asymmetric support of tunnels with similar engineering backgrounds.展开更多
基金supported by the National Natural Science Funds for Young Scholar of China(Grant No.51005063)the Heilongjiang Postdoctoral Science-Research Foundation(GrantLBH-Q12062)the National Natural Science Foundation of China(Grant No.51075106)
文摘To study the heavy hydrostatic bearing with multiple oil pads, a reasonably simplified model of the pad is put forward, and the mathematical model of the bearing characteristics of the multiple oil pad hydrostatic bearing is built with consideration of variable viscosity. The pressure field in the clearance oil film of the hydrostatic bearing at various velocities is simulated based on the Finite Volume Method (FVM) by using the software of Computational Fluid Dynamics (CFD). Some pressure experiments on the hydrostatic bearing were carried out and the results verified the rationality of the simplified model of the pad and the validity of the numerical simulation. It is concluded that the viscosity has a great influence on the pressure in the heavy hydrostatic bearing and cannot be neglected, especially, in cases of high rotating speed. The results of numerical calculations provide the internal flow states inside the bearing, which would help the design of the oil cavity structure of the bearing in engineering practice.
基金Supported by the National Natural Science Funds for Young Scholar of China(No.51005063)the Science and Technology Innovation People of Harbin(No.2013RFQXJ086)+1 种基金Heilongjiang Postdoctoral Foundation(No.LBH-Q12062)the National Natural Science Foundation of China(No.51075106)
文摘In order to improve the cutting stiffness,the paper studies the vertical hydrostatic bearing in the slide when a ram is in feed process.The change of the oil film thickness on hydrostatic guide rail and the curve of the oil film thickness in various cutting forces are calculated and a relation model through theoretical analysis method is derived.The pressure field of the guide rail recess is simulated based on the finite volume method and demonstrated through experiments.The study is of vital theoretical significance for the improvement of machining accuracy of numerical control machines and the entire computer numerical control(CNC) equipment and provides valuable theoretical basis for the design of hydrostatic guide rail in engineering practice.
基金supported by National Natural Science Foundation of China(Grant Nos.11872287 and 51908431)Fund of Shaanxi Key Research and Development Program(Grant No.2019ZDLGY01-10)。
文摘Circumferential yielding lining is able to tolerate controlled displacements without failure,which has been proven to be an effective solution to large deformation problem in squeezing tunnels.However,up to now,there has not been a well-established design method for it.This paper aims to present a detailed analytical computation of support characteristic curve(SCC)for circumferential yielding lining,which is a significant aspect of the implementation of convergence-confinement method(CCM)in tunnel support design.Circumferential yielding lining consists of segmental shotcrete linings and highly deformable elements,and its superior performance mainly depends on the mechanical characteristic of highly deformable element.The deformation behavior of highly deformable element is firstly investigated.Its whole deforming process can be divided into three stages including elastic,yielding and compaction stages.Especially in the compaction stage of highly deformable element,a nonlinear stress-strain relationship can be observed.For mathematical convenience,the stress-strain curve in this period is processed as several linear sub-curves.Then,the reasons for closure of circumferential yielding lining in different stages are explained,and the corresponding accurate equations required for constructing the SCC are provided.Furthermore,this paper carries out two case studies illustrating the application of all equations needed to construct the SCC for circumferential yielding lining,where the reliability and feasibility of theoretical derivation are also well verified.Finally,this paper discusses the sensitivity of sub-division in element compaction stage and the influence of element length on SCC.The outcome of this paper could be used in the design of proper circumferential yielding lining.
基金supported by the general program of the National Natural Science Foundation of China(Grant No.52074295)the Special Fund for Basic Scientific Research Business Expenses of Central Universities,China(Grant No.2022YJSSB06)State Key Laboratory for Geomechanics and Deep Underground Engineering,China University of Mining&Technology,Beijing,China(Grant No.SKLGDUEK202217).
文摘With the continuous increase in tunnel construction,the significant deformation of the surrounding tunnel rock is often difficult to predict and control.In addition,the lithology,structure,and various asymmetric large deformation of surrounding rock mass during operation and maintenance severely affect the ultimate bearing and stability of the tunnel.To explore the deformation mechanisms and failure modes of surrounding rock under large asymmetric stress and complex geological conditions,a physical model of a tunnel through granite was constructed based on the similarity theory.The model had 30°dip lithology under asymmetric stress and was emplaced a new quasi-negative Poisson’s ratio(NPR)bolt.By analyzing the variation law of displacement and axial force of the bolt under an asymmetric load,the asymmetric deformation and failure mechanism of the granite tunnel and the support effect of the quasi-NPR bolt were determined.The energy absorbed by the surrounding rock was analyzed,and the influence mechanism and control countermeasures of asymmetric stress on the granite tunnel were explored.This work provides a reference for the design of asymmetric support of tunnels with similar engineering backgrounds.