The hydrogen evolution reaction (HER) and dendrite growth associated with Zn anode have become the main bottlenecks for the further development of zinc ion batteries (ZIBs).In this work,the electrochemical activity of...The hydrogen evolution reaction (HER) and dendrite growth associated with Zn anode have become the main bottlenecks for the further development of zinc ion batteries (ZIBs).In this work,the electrochemical activity of H_(3)O^(+) is inhibited by the supramolecular host–guest complex composed of H_(3)O^(+) as guest and 18-crown-6 as host.The even Zn plating is induced by the host–guest complex electrostatic shielding layer on Zn anode,as detected by in-situ optical microscopy.The lamellar Zn is plated which profits from the improved Zn plating behavior.Density functional theory (DFT) calculation presents the stable structure of complex.The less produced H_(2) content is monitored online by a mass spectrometer during Zn plating/stripping,which indicates HER can be hampered by the host–guest behavior.Thus,the ZIBs with long life and high Coulombic efficiency are achieved via introducing 18-crown-6.The proposed host–guest supramolecular interaction is expected to facilitate the furthermore development of Zn batteries.展开更多
Compared to traditional polymer hydrogels,supramolecular hydrogels exhibits superior reversibility and stimulus response due to the instantaneous and reversible nature of non-covalent bonds.In this paper,we utilized t...Compared to traditional polymer hydrogels,supramolecular hydrogels exhibits superior reversibility and stimulus response due to the instantaneous and reversible nature of non-covalent bonds.In this paper,we utilized the host-guest exclusion interaction between Decamethylcucurbit[5]uril(Me_(10)Q[5])and the 2,7-diaminofluorenedihydrochloride(DAF·HCl)to construct a Q[n]-based hydrogel system.The composition,structure,and properties of the hydrogel were compre-hensively characterized using rheometer,nuclear magnetic resonance,scanning electron microscope.This cost-effective and straightforward hydrogel synthesis method paves the way for the scalable production of practical and commercially viable Q[n]-based hydrogels.展开更多
Smart materials serve as the fundamental cornerstone supporting humanity's transition into the intelligent era.Smart materials possess the capability to perceive external stimuli and respond accordingly.Light-cont...Smart materials serve as the fundamental cornerstone supporting humanity's transition into the intelligent era.Smart materials possess the capability to perceive external stimuli and respond accordingly.Light-controlled smart materials(LCSMs)are a significant category that can sense and respond to light stimuli.Light,being a non-invasive,precisely regulated,and remotely controllable source of physical stimulation,makes LCSMs indispensable in certain application sce-narios.Recently,the construction of LCSMs using supramolecular strategies has emerged as a significant research focus.Supramolecular assembly,based on non-covalent bonding,offers dynamic,reversible,and biomimetic properties.By integrating supramolecular systems with photoresponsive molecular building blocks,these materials can achieve synergistic and rich intelligent stimulus re-sponses.This review delves into the latest research advancements in LCSMs based on supramolecular strategies.There are four sections in this review.The first section defines LCSMs and outlines their advantages.The second section discusses the design approaches of supramolecular LCSMs.The third section highlights the latest advancements on supramolecular LCSMs over the past 3 years.The fourth section summarizes the current research and provides insights into the future development of this field.展开更多
Lithium sulfur batteries(LSBs)show great promise as next-generation batteries due to their high energy density.However,commercialization is hindered by limited cycle life,fast capacity decay and poor sulfur utilizatio...Lithium sulfur batteries(LSBs)show great promise as next-generation batteries due to their high energy density.However,commercialization is hindered by limited cycle life,fast capacity decay and poor sulfur utilization,primarily due to the intricate phase evolution during battery operation and insulating characteristics of sulfur,leading to uncontrollable sulfur and polysulfide distribution and inefficient conversion kinetics.Therefore,the incorporation of metal and covalent organic frameworks(MOFs and COFs)has been widely employed in LSBs to serve as hosts,enabling the regulation of conversion and diffusion behavior of guest species,including lithium ions,sulfur and polysulfides,within their well-defined nanosized cavities.Nevertheless,pristine frameworks often fail to meet the requisite standards,and framework functionalization offers unique opportunities to tailor desired attributes and facilitate selective host-guest interactions in LSBs.However,a thorough understanding on how to precisely customize the nano-channels with functional groups to promote such interactions remains largely unexplored.In this review,we provide a systematic discussion on how the grafting of functional groups containing various active sites can play a role in host-guest chemistry,and focus on the latest advancements in engineering functionalized MOFs and COFs as charged-species regulators to tackle the problems causing poor LSB electrochemical performance.The concepts of electrophilic and nucleophilic effects are proposed,uncovering the mechanisms of framework functionalization in LSBs and serving as guidance for future developments.展开更多
The reactions of SbCl3 and HgCl2 with 2-(3-pyridyl)benzimidazole (PyBIm) in solution acidified with HCl have been investigated. The PyBIm ligands are protonated into 2-(3-pyridinio)benzimidazolium (H2PyBIm) ca...The reactions of SbCl3 and HgCl2 with 2-(3-pyridyl)benzimidazole (PyBIm) in solution acidified with HCl have been investigated. The PyBIm ligands are protonated into 2-(3-pyridinio)benzimidazolium (H2PyBIm) cations and the corresponding metal ions are bonded with chloride atoms into coordination anions, forming two new coordination compounds, namely, (H2PyBIm)(SbCl5) 1 and (H2PyBIm)2(Hg2Cl8) 2. Both compounds were characterized by X-ray crystallography. Crystal data for 1: triclinic, space group P1^- with a = 5.7030(7), b = 9.0625(11), c = 16.5929(18) A, α = 91.808(7)°, β = 93.234(6), γ = 99.216(7)°, C12H11N3SbCl5, Mr = 496.24, V = 844.44(17) A^3, Z = 2, Dc = 1.952 g/cm^3, μ(MoKα) = 2.419 mm^-1, F(000) = 480, the final R = 0.0496 and wR = 0.1382 for 3433 observed reflections (I 〉 2σ(I)). Crystal data for 2: monoclinic, space group P21/c with a = 7.8061(5), b = 15.8127(9), c = 12.2435(9) , β = 91.955(4)o, C24H22N6Hg2Cl8, Mr = 1079.26, V = 1510.40(17) 3, Z = 2, Dc = 2.373 g/cm3, μ(MoKα) = 10.889 mm-1, F(000) = 1008, the final R = 0.0293 and wR = 0.0562 for 2854 observed reflections (I 〉 2σ(I)). X-ray diffraction analysis reveals that the antimony(III) is five-coordinated, exhibiting a slightly distorted square-pyramidal coordination geometry; while in 2, a dimeric [Hg2Cl8]^4-anion consists of two trigonal bipyramids sharing two common edges. The organic cations and coordination anions are connected into a one-dimensional belt and a two-dimensional sheet through N-H···Cl hydrogen bonding interactions in compounds 1 and 2, respectively; both are further aggregated into 3D frameworks by strong π-π contacts.展开更多
In light of developments in polysaccharide-based sustainable processes involving supramolecular interactions,we herein present our findings pertaining to coaxing polysaccharide granules into functional supramolecular ...In light of developments in polysaccharide-based sustainable processes involving supramolecular interactions,we herein present our findings pertaining to coaxing polysaccharide granules into functional supramolecular biocolloids.Translucent biocolloidal dispersions containing various forms of starch are facilely designable,essentially built upon complexation between disassembled native cornstarch granules and amphiphilic ligands.Oily moieties of guest molecules are dynamically attractable into cavities of helical structures,with cationic groups pointing toward the bulk phase.This noncovalent attraction can generate core-shell biocolloidal particles.The significantly higher gelatinizability of freeze-dried biocolloids in contrast to native cornstarch granules is attributable to complex formation,and a homogenous dispersion is readily formable at room temperature.Our results also show biocolloids'ligand-related antibacterial activity.The use of biocolloids as wet-end additives for biofiber assemblies(cellulosic paper)can enhance mechanical strength,fines retention,and filler bondability.Supramolecular biocolloids with positively charged,translucent,easily gelatinizable,antibacterial,and polysaccharide-bondable functionalities would find tailorable use in the paper industry.展开更多
The novel one-dimensional coordination polymer {[Cu(L)2(H2O)]?2BF4?6H2O}∞ [1, L=1,2-bis(4-pyridinecarboxamido)ethane] was synthesized as single crystals and characterized by means of X-ray diffraction analysis, eleme...The novel one-dimensional coordination polymer {[Cu(L)2(H2O)]?2BF4?6H2O}∞ [1, L=1,2-bis(4-pyridinecarboxamido)ethane] was synthesized as single crystals and characterized by means of X-ray diffraction analysis, elemental analysis, IR spectroscopy and TG measurement. Structure 1 consists of looped chains. In addition, linked by hydrogen bonds, the one-dimensional chains were transformed into three-dimensional framework, which shows channels filled with anions and uncoordinated water molecules.展开更多
Porphyrins are abundant in nature. They have been frequently employed as building blocks in the construction of nanoarchitectures and functional supramolecular systems. Recently, a series of novel porphyrin molecules ...Porphyrins are abundant in nature. They have been frequently employed as building blocks in the construction of nanoarchitectures and functional supramolecular systems. Recently, a series of novel porphyrin molecules including small molecules and polymers have been originally designed and synthesized with the aim of producing nanostructures with controllable-growth and materials with high-performance. Literature coverage is through 2004-2012. This review gives a full summary of related studies in our group.展开更多
The complex [La2(m-ox){Cr(bipy)(m-ox)(ox)}4(H2O)6]?2.3(H2O) (C58H68.6N8O54.3Cr4La2) 1 has been obtained from the reaction of La(Ⅲ) salt with [Cr(bipy)(ox)2]- (bipy = 2,2?bipyridine and ox = oxalate dianion) building ...The complex [La2(m-ox){Cr(bipy)(m-ox)(ox)}4(H2O)6]?2.3(H2O) (C58H68.6N8O54.3Cr4La2) 1 has been obtained from the reaction of La(Ⅲ) salt with [Cr(bipy)(ox)2]- (bipy = 2,2?bipyridine and ox = oxalate dianion) building blocks in aqueous solution and structurally characterized by X-ray diffraction analysis. It crystallizes in monoclinic, space group P21/c with a = 10.740(2), b = 17.943(4), c = 22.388(5) ? V = 4314(2) 3, Z = 2, Mr = 2232.43, Dc = 1.719 g/cm3, F(000) = 2234, m(MoKa) = 1.565 cm-1 and T = 293(2) K. With the use of 5202 observed reflections (I > 2s(I)), the structure was refined to R = 0.0742 and wR = 0.1554. Complex 1 shows a two-dimensional open network constructed from hexanuclear {La2Cr4} units through the intermolecular hydrogen interactions.展开更多
The preparation and crystal structure of complex Co(Hsae)2·2H2O (1, H2sae = N-salicylidene-2-iminoethanol) are reported. X- ray analysis revealed that every six Co(Hsae)2 forms a cyclic chip and every 12 wa...The preparation and crystal structure of complex Co(Hsae)2·2H2O (1, H2sae = N-salicylidene-2-iminoethanol) are reported. X- ray analysis revealed that every six Co(Hsae)2 forms a cyclic chip and every 12 water forms a novel gear-like cluster. Acting as building blocks, the gear-like water cluster and complex chip are connected in A-B fashion and extend into one-dimensional supramolecular chain. Hydrogen bond is the primary bridging force in the formation of supramolecular framework.展开更多
Dimension-controllable supramolecular organic frameworks(SOFs)with aggregation-enhanced fluorescence are hierarchically fabricated through the host-guest interactions of cucurbit[8]uril(CB[8])and coumarin-modified tet...Dimension-controllable supramolecular organic frameworks(SOFs)with aggregation-enhanced fluorescence are hierarchically fabricated through the host-guest interactions of cucurbit[8]uril(CB[8])and coumarin-modified tetraphenylethylene derivatives(TPEC).The three-dimensional layered SOFs could be constructed from the further stacking of two-dimensional mono-layered structures via simply regulating the self-assembly conditions including the culturing time and concentration.Upon light irradiation under the wavelength of 365 nm,the photodimerization of coumarin moieties occurred,which resulted in the transformation of the resultant TPECn/CB[8]4n two-dimensional SOFs into robust covalently-connected 2D polymers with molecular thickness.Interestingly,the supramolecular system of TPEC/CB[8]exhibited intriguing multicolor fluorescence emission from yellow to blue in the time range of 0-24 h at 365 nm irradiation,possessing potential applicability for photochromic fluorescence ink.展开更多
The rapid and precise fabrication of multiscale supramolecular assemblies using micro/nanofluidic techniques has emerged as a dynamic area of research in supramolecular chemistry, materials chemistry, and organic chem...The rapid and precise fabrication of multiscale supramolecular assemblies using micro/nanofluidic techniques has emerged as a dynamic area of research in supramolecular chemistry, materials chemistry, and organic chemistry. This review summarizes the application of micro/nanofluidic techniques in constructing supramolecular assemblies, including nanoscale supramolecular assemblies such as macrocycles and cages, microscale supramolecular assemblies such as metal organic frameworks (MOFs) and covalent organic frameworks (COFs), and macroscale supramolecular assemblies such as supramolecular hydrogels. Compared to conventional synthesis methods, micro/nanofluidic techniques for the production of supramolecular assemblies have significant advantages, including enhanced safety, high reaction rates, improved selectivity/yield, and scalability. Additionally, micro/nanofluidic systems facilitate the creation of precisely controllable micro/nanoconfined environments, allowing for a unique flow behavior that improves our understanding of the supramolecular self-assembly process. Such systems may also lead to the development of novel supramolecular assemblies that differ from those generated via traditional methods.展开更多
Supramolecular self-assembly,an important strategy in nanotechnology,has been widely studied in the past two decades.In this review,we have introduced the recent progress on construction of two-dimensional(2D)nanostru...Supramolecular self-assembly,an important strategy in nanotechnology,has been widely studied in the past two decades.In this review,we have introduced the recent progress on construction of two-dimensional(2D)nanostructures by host-guest supramolecular chemistry at solid-liquid interface,and the interactions between the host assembly and the guest molecules are the major concerns.At first,the hydrogen bonds connected hybrid structures are discussed.And then we have paid a close attention on the surface-confined condensation reactions that has flourished recently in direct preparing novel nanostructures with increasing structural complexity.In the end,the cavity confinement of the 2D supramolecular host-guest architectures has been studied.On the basis of the above-mentioned interactions,a group of functional hybrid structures have been prepared.Notably,scanning tunneling microscopy(STM),a unique technique to probe the surface morphology and information at the single molecule level,has been used to probe the formed structures on highly oriented pyrolytic graphite(HOPG)surface.展开更多
Enantiomeric molecules generally play distinct functions in chemistry,biology,and pharmacology.Similar physical and chemical properties of chiral analytes lay difficulty in discrimination and quantification of the ena...Enantiomeric molecules generally play distinct functions in chemistry,biology,and pharmacology.Similar physical and chemical properties of chiral analytes lay difficulty in discrimination and quantification of the enantiomers.We report herein an efficient approach of increasing the chiral sensing ability ofβ-cyclodextrin(β-CD),a widely used host molecule,in the hostguest chemistry by magnetic anisotropy.A rigid and chiral lanthanide binding tag was attached to theβ-CD to amplify the changes of nuclear magnetic resonance(NMR)signals in the host-guest recognition process.The installation of the paramagnetic lanthanide ion inβ-CD greatly enhances the enantiomeric discrimination up to 30-fold in comparison with the diamagneticβ-CD reference.In addition,the magnitude of the paramagnetic effects is tunable according to the diverse range of paramagnetic strength of the lanthanide series.The reported method significantly increases the chiral sensing ability ofβ-CD,which can be applied to other host molecules.The transferred paramagnetic effects,pseudocontact shifts(PCSs)and paramagnetic relaxation enhancements(PREs),from the host to the guest molecules,are valuable structural restraints to determine the absolute stereochemistry of the chiral analytes.The strategy does not need modification of the analytes and is complementary to the reported analytical methods that rely on the functionalization of the chiral analytes.展开更多
Macrocyclic compounds are of great interest for their ability to capture guest molecules into their cavities.In particular,host-guest interaction plays a crucial role in the formation of supramolecular compounds.Herei...Macrocyclic compounds are of great interest for their ability to capture guest molecules into their cavities.In particular,host-guest interaction plays a crucial role in the formation of supramolecular compounds.Herein,two host-guest supramolecular compounds,[Al_(8)(OH)_(8)(L)_(16)]·2HL(HL@AlOC-166,HL=4-Iodobenzoic acid)and[Al_(8)(OH)_(8)(L)_(8)(L1)_(8)]·2DMF(DMF@AlOC-166,HL1=isoamyl alcohol),are acquired by introducing different types of guest components based on the internal pore cavities of the aluminum molecular ring[Al_(8)(OH)_(8)(L)_(16)](AlOC-166).The inclusion of these guests is attributed to the presence of abundant hydrophilic OH serving as the hydrogen bond donors inward the ring cavity.Host-guest compounds usually exhibit superior nonlinear optical(NLO)response due to the existence of guest molecules that could change symmetry,dipole moments,charge distributions,etc.Unexpectedly,the AlOC-166 achieved the best NLO results,although it had no guest molecules inside its molecular ring,which breaks the traditional concept.The reason for this trend can be explained by the difference in intermolecular force rather than intramolecular interaction,mainly related to the amount and strength ofπ···πand C—I···πinteractions in different compounds.This work investigates the effect of host-guest interaction on NLO,representing a new perspective for designing optical limiting materials.展开更多
Organic molecules that exhibit long persistent luminescence (LPL) are rapidly gaining attention for a variety of applications. In this study, organic molecules with simple structures were selected and organic long per...Organic molecules that exhibit long persistent luminescence (LPL) are rapidly gaining attention for a variety of applications. In this study, organic molecules with simple structures were selected and organic long persistent luminescence (OLPL) crystals were prepared. The crystal structure of the prepared OLPL crystal was elucidated and the guideline for the design of OLPL crystal was clarified. LPL was observed in OLPL crystals prepared with TMB as the guest molecule and 1,2-bis(diphenylphosphino)ethane as the host molecule. XRD measurements of the OLPL crystals suggest that the guest molecule is a solid solution substituted in the stable crystal structure of the host molecule in a lattice-shrinking direction.展开更多
基金the partial financial support from the National Natural Science Foundation of China (22075171)。
文摘The hydrogen evolution reaction (HER) and dendrite growth associated with Zn anode have become the main bottlenecks for the further development of zinc ion batteries (ZIBs).In this work,the electrochemical activity of H_(3)O^(+) is inhibited by the supramolecular host–guest complex composed of H_(3)O^(+) as guest and 18-crown-6 as host.The even Zn plating is induced by the host–guest complex electrostatic shielding layer on Zn anode,as detected by in-situ optical microscopy.The lamellar Zn is plated which profits from the improved Zn plating behavior.Density functional theory (DFT) calculation presents the stable structure of complex.The less produced H_(2) content is monitored online by a mass spectrometer during Zn plating/stripping,which indicates HER can be hampered by the host–guest behavior.Thus,the ZIBs with long life and high Coulombic efficiency are achieved via introducing 18-crown-6.The proposed host–guest supramolecular interaction is expected to facilitate the furthermore development of Zn batteries.
文摘Compared to traditional polymer hydrogels,supramolecular hydrogels exhibits superior reversibility and stimulus response due to the instantaneous and reversible nature of non-covalent bonds.In this paper,we utilized the host-guest exclusion interaction between Decamethylcucurbit[5]uril(Me_(10)Q[5])and the 2,7-diaminofluorenedihydrochloride(DAF·HCl)to construct a Q[n]-based hydrogel system.The composition,structure,and properties of the hydrogel were compre-hensively characterized using rheometer,nuclear magnetic resonance,scanning electron microscope.This cost-effective and straightforward hydrogel synthesis method paves the way for the scalable production of practical and commercially viable Q[n]-based hydrogels.
基金support from the National Natural Science Foundation of China(22171096)the Guangdong Basic and Applied Basic Research Foundation(2022A1515140164)support from Guangdong HUST Industrial Technology Research Institute(2023B1212060012)of Guangdong HUST Industrial Technology Research Institute.
文摘Smart materials serve as the fundamental cornerstone supporting humanity's transition into the intelligent era.Smart materials possess the capability to perceive external stimuli and respond accordingly.Light-controlled smart materials(LCSMs)are a significant category that can sense and respond to light stimuli.Light,being a non-invasive,precisely regulated,and remotely controllable source of physical stimulation,makes LCSMs indispensable in certain application sce-narios.Recently,the construction of LCSMs using supramolecular strategies has emerged as a significant research focus.Supramolecular assembly,based on non-covalent bonding,offers dynamic,reversible,and biomimetic properties.By integrating supramolecular systems with photoresponsive molecular building blocks,these materials can achieve synergistic and rich intelligent stimulus re-sponses.This review delves into the latest research advancements in LCSMs based on supramolecular strategies.There are four sections in this review.The first section defines LCSMs and outlines their advantages.The second section discusses the design approaches of supramolecular LCSMs.The third section highlights the latest advancements on supramolecular LCSMs over the past 3 years.The fourth section summarizes the current research and provides insights into the future development of this field.
基金supported by the Singapore Ministry of Education,and the National Research Foundation(NRF)for research conducted at the National University of Singapore(CRP NRF-CRP26-2021-0003).
文摘Lithium sulfur batteries(LSBs)show great promise as next-generation batteries due to their high energy density.However,commercialization is hindered by limited cycle life,fast capacity decay and poor sulfur utilization,primarily due to the intricate phase evolution during battery operation and insulating characteristics of sulfur,leading to uncontrollable sulfur and polysulfide distribution and inefficient conversion kinetics.Therefore,the incorporation of metal and covalent organic frameworks(MOFs and COFs)has been widely employed in LSBs to serve as hosts,enabling the regulation of conversion and diffusion behavior of guest species,including lithium ions,sulfur and polysulfides,within their well-defined nanosized cavities.Nevertheless,pristine frameworks often fail to meet the requisite standards,and framework functionalization offers unique opportunities to tailor desired attributes and facilitate selective host-guest interactions in LSBs.However,a thorough understanding on how to precisely customize the nano-channels with functional groups to promote such interactions remains largely unexplored.In this review,we provide a systematic discussion on how the grafting of functional groups containing various active sites can play a role in host-guest chemistry,and focus on the latest advancements in engineering functionalized MOFs and COFs as charged-species regulators to tackle the problems causing poor LSB electrochemical performance.The concepts of electrophilic and nucleophilic effects are proposed,uncovering the mechanisms of framework functionalization in LSBs and serving as guidance for future developments.
基金supported by the Natural Science Foundation of Fujian Province (2007HZ0001-1, 2009HZ0004-1, 2009HZ0006-1 and 2006L2005)
文摘The reactions of SbCl3 and HgCl2 with 2-(3-pyridyl)benzimidazole (PyBIm) in solution acidified with HCl have been investigated. The PyBIm ligands are protonated into 2-(3-pyridinio)benzimidazolium (H2PyBIm) cations and the corresponding metal ions are bonded with chloride atoms into coordination anions, forming two new coordination compounds, namely, (H2PyBIm)(SbCl5) 1 and (H2PyBIm)2(Hg2Cl8) 2. Both compounds were characterized by X-ray crystallography. Crystal data for 1: triclinic, space group P1^- with a = 5.7030(7), b = 9.0625(11), c = 16.5929(18) A, α = 91.808(7)°, β = 93.234(6), γ = 99.216(7)°, C12H11N3SbCl5, Mr = 496.24, V = 844.44(17) A^3, Z = 2, Dc = 1.952 g/cm^3, μ(MoKα) = 2.419 mm^-1, F(000) = 480, the final R = 0.0496 and wR = 0.1382 for 3433 observed reflections (I 〉 2σ(I)). Crystal data for 2: monoclinic, space group P21/c with a = 7.8061(5), b = 15.8127(9), c = 12.2435(9) , β = 91.955(4)o, C24H22N6Hg2Cl8, Mr = 1079.26, V = 1510.40(17) 3, Z = 2, Dc = 2.373 g/cm3, μ(MoKα) = 10.889 mm-1, F(000) = 1008, the final R = 0.0293 and wR = 0.0562 for 2854 observed reflections (I 〉 2σ(I)). X-ray diffraction analysis reveals that the antimony(III) is five-coordinated, exhibiting a slightly distorted square-pyramidal coordination geometry; while in 2, a dimeric [Hg2Cl8]^4-anion consists of two trigonal bipyramids sharing two common edges. The organic cations and coordination anions are connected into a one-dimensional belt and a two-dimensional sheet through N-H···Cl hydrogen bonding interactions in compounds 1 and 2, respectively; both are further aggregated into 3D frameworks by strong π-π contacts.
基金supported by the Fundamental Research Funds for Central Universities of China(2572018CG04)the Natural Science Foundation of China(218708046)+1 种基金the Program for New Century Excellent Talents in University(NCET-12-0811)the Longjiang Scholars Program(Q201809).
文摘In light of developments in polysaccharide-based sustainable processes involving supramolecular interactions,we herein present our findings pertaining to coaxing polysaccharide granules into functional supramolecular biocolloids.Translucent biocolloidal dispersions containing various forms of starch are facilely designable,essentially built upon complexation between disassembled native cornstarch granules and amphiphilic ligands.Oily moieties of guest molecules are dynamically attractable into cavities of helical structures,with cationic groups pointing toward the bulk phase.This noncovalent attraction can generate core-shell biocolloidal particles.The significantly higher gelatinizability of freeze-dried biocolloids in contrast to native cornstarch granules is attributable to complex formation,and a homogenous dispersion is readily formable at room temperature.Our results also show biocolloids'ligand-related antibacterial activity.The use of biocolloids as wet-end additives for biofiber assemblies(cellulosic paper)can enhance mechanical strength,fines retention,and filler bondability.Supramolecular biocolloids with positively charged,translucent,easily gelatinizable,antibacterial,and polysaccharide-bondable functionalities would find tailorable use in the paper industry.
文摘The novel one-dimensional coordination polymer {[Cu(L)2(H2O)]?2BF4?6H2O}∞ [1, L=1,2-bis(4-pyridinecarboxamido)ethane] was synthesized as single crystals and characterized by means of X-ray diffraction analysis, elemental analysis, IR spectroscopy and TG measurement. Structure 1 consists of looped chains. In addition, linked by hydrogen bonds, the one-dimensional chains were transformed into three-dimensional framework, which shows channels filled with anions and uncoordinated water molecules.
基金supported by the National Natural Science Foundation of China(21031006)NSFC-DFG joint fund(TRR 61)the National Basic Research 973 Program of China(2011CB932302 and 2012CB932900)
文摘Porphyrins are abundant in nature. They have been frequently employed as building blocks in the construction of nanoarchitectures and functional supramolecular systems. Recently, a series of novel porphyrin molecules including small molecules and polymers have been originally designed and synthesized with the aim of producing nanostructures with controllable-growth and materials with high-performance. Literature coverage is through 2004-2012. This review gives a full summary of related studies in our group.
基金The research was supported by the grants from the National Natural Science Foundation of China the Natural Science Foundation of Fujian Province and the Chinese Academy of Sciences
文摘The complex [La2(m-ox){Cr(bipy)(m-ox)(ox)}4(H2O)6]?2.3(H2O) (C58H68.6N8O54.3Cr4La2) 1 has been obtained from the reaction of La(Ⅲ) salt with [Cr(bipy)(ox)2]- (bipy = 2,2?bipyridine and ox = oxalate dianion) building blocks in aqueous solution and structurally characterized by X-ray diffraction analysis. It crystallizes in monoclinic, space group P21/c with a = 10.740(2), b = 17.943(4), c = 22.388(5) ? V = 4314(2) 3, Z = 2, Mr = 2232.43, Dc = 1.719 g/cm3, F(000) = 2234, m(MoKa) = 1.565 cm-1 and T = 293(2) K. With the use of 5202 observed reflections (I > 2s(I)), the structure was refined to R = 0.0742 and wR = 0.1554. Complex 1 shows a two-dimensional open network constructed from hexanuclear {La2Cr4} units through the intermolecular hydrogen interactions.
基金supported by the Natural Science Foundation of Education Bureau of Liaoning Province,China(No.05L159).
文摘The preparation and crystal structure of complex Co(Hsae)2·2H2O (1, H2sae = N-salicylidene-2-iminoethanol) are reported. X- ray analysis revealed that every six Co(Hsae)2 forms a cyclic chip and every 12 water forms a novel gear-like cluster. Acting as building blocks, the gear-like water cluster and complex chip are connected in A-B fashion and extend into one-dimensional supramolecular chain. Hydrogen bond is the primary bridging force in the formation of supramolecular framework.
基金supported by Anhui Province Natural Science Funds(2008085QE209)K2020-03 from the State Key Laboratory of Molecular Engineering of Polymers(Fudan University)。
文摘Dimension-controllable supramolecular organic frameworks(SOFs)with aggregation-enhanced fluorescence are hierarchically fabricated through the host-guest interactions of cucurbit[8]uril(CB[8])and coumarin-modified tetraphenylethylene derivatives(TPEC).The three-dimensional layered SOFs could be constructed from the further stacking of two-dimensional mono-layered structures via simply regulating the self-assembly conditions including the culturing time and concentration.Upon light irradiation under the wavelength of 365 nm,the photodimerization of coumarin moieties occurred,which resulted in the transformation of the resultant TPECn/CB[8]4n two-dimensional SOFs into robust covalently-connected 2D polymers with molecular thickness.Interestingly,the supramolecular system of TPEC/CB[8]exhibited intriguing multicolor fluorescence emission from yellow to blue in the time range of 0-24 h at 365 nm irradiation,possessing potential applicability for photochromic fluorescence ink.
基金the National Nature Science Foundation of China (Nos. 22107028 and 22103062)Program of Shanghai Outstanding Academic Leaders (No. 21XD1421200)Science and Technology Commission of Shanghai Municipality (No. 22JC1403900).
文摘The rapid and precise fabrication of multiscale supramolecular assemblies using micro/nanofluidic techniques has emerged as a dynamic area of research in supramolecular chemistry, materials chemistry, and organic chemistry. This review summarizes the application of micro/nanofluidic techniques in constructing supramolecular assemblies, including nanoscale supramolecular assemblies such as macrocycles and cages, microscale supramolecular assemblies such as metal organic frameworks (MOFs) and covalent organic frameworks (COFs), and macroscale supramolecular assemblies such as supramolecular hydrogels. Compared to conventional synthesis methods, micro/nanofluidic techniques for the production of supramolecular assemblies have significant advantages, including enhanced safety, high reaction rates, improved selectivity/yield, and scalability. Additionally, micro/nanofluidic systems facilitate the creation of precisely controllable micro/nanoconfined environments, allowing for a unique flow behavior that improves our understanding of the supramolecular self-assembly process. Such systems may also lead to the development of novel supramolecular assemblies that differ from those generated via traditional methods.
基金supports from the National Basic Research Program of China(2011CB932303,2013CB934200)the National Natural Science Foundation of China(21073048,51173031,91127043)are also gratefully acknowledged
文摘Supramolecular self-assembly,an important strategy in nanotechnology,has been widely studied in the past two decades.In this review,we have introduced the recent progress on construction of two-dimensional(2D)nanostructures by host-guest supramolecular chemistry at solid-liquid interface,and the interactions between the host assembly and the guest molecules are the major concerns.At first,the hydrogen bonds connected hybrid structures are discussed.And then we have paid a close attention on the surface-confined condensation reactions that has flourished recently in direct preparing novel nanostructures with increasing structural complexity.In the end,the cavity confinement of the 2D supramolecular host-guest architectures has been studied.On the basis of the above-mentioned interactions,a group of functional hybrid structures have been prepared.Notably,scanning tunneling microscopy(STM),a unique technique to probe the surface morphology and information at the single molecule level,has been used to probe the formed structures on highly oriented pyrolytic graphite(HOPG)surface.
基金supported by the Ministry of Science and Technology of China(2021YFA1600304)the National Natural Science Foundation of China(22161142018,21991081,22174074,22374126)。
文摘Enantiomeric molecules generally play distinct functions in chemistry,biology,and pharmacology.Similar physical and chemical properties of chiral analytes lay difficulty in discrimination and quantification of the enantiomers.We report herein an efficient approach of increasing the chiral sensing ability ofβ-cyclodextrin(β-CD),a widely used host molecule,in the hostguest chemistry by magnetic anisotropy.A rigid and chiral lanthanide binding tag was attached to theβ-CD to amplify the changes of nuclear magnetic resonance(NMR)signals in the host-guest recognition process.The installation of the paramagnetic lanthanide ion inβ-CD greatly enhances the enantiomeric discrimination up to 30-fold in comparison with the diamagneticβ-CD reference.In addition,the magnitude of the paramagnetic effects is tunable according to the diverse range of paramagnetic strength of the lanthanide series.The reported method significantly increases the chiral sensing ability ofβ-CD,which can be applied to other host molecules.The transferred paramagnetic effects,pseudocontact shifts(PCSs)and paramagnetic relaxation enhancements(PREs),from the host to the guest molecules,are valuable structural restraints to determine the absolute stereochemistry of the chiral analytes.The strategy does not need modification of the analytes and is complementary to the reported analytical methods that rely on the functionalization of the chiral analytes.
基金supported by the National Natural Science Foundation of China(U23A2095,22371278)Funding of the Fujian Provincial Chemistry Discipline Alliance,Natural Science Foundation of Fujian Province(2021J06035)Youth Innovation Promotion Association of the Chinese Academy of Sciences(Y2018081).
文摘Macrocyclic compounds are of great interest for their ability to capture guest molecules into their cavities.In particular,host-guest interaction plays a crucial role in the formation of supramolecular compounds.Herein,two host-guest supramolecular compounds,[Al_(8)(OH)_(8)(L)_(16)]·2HL(HL@AlOC-166,HL=4-Iodobenzoic acid)and[Al_(8)(OH)_(8)(L)_(8)(L1)_(8)]·2DMF(DMF@AlOC-166,HL1=isoamyl alcohol),are acquired by introducing different types of guest components based on the internal pore cavities of the aluminum molecular ring[Al_(8)(OH)_(8)(L)_(16)](AlOC-166).The inclusion of these guests is attributed to the presence of abundant hydrophilic OH serving as the hydrogen bond donors inward the ring cavity.Host-guest compounds usually exhibit superior nonlinear optical(NLO)response due to the existence of guest molecules that could change symmetry,dipole moments,charge distributions,etc.Unexpectedly,the AlOC-166 achieved the best NLO results,although it had no guest molecules inside its molecular ring,which breaks the traditional concept.The reason for this trend can be explained by the difference in intermolecular force rather than intramolecular interaction,mainly related to the amount and strength ofπ···πand C—I···πinteractions in different compounds.This work investigates the effect of host-guest interaction on NLO,representing a new perspective for designing optical limiting materials.
文摘Organic molecules that exhibit long persistent luminescence (LPL) are rapidly gaining attention for a variety of applications. In this study, organic molecules with simple structures were selected and organic long persistent luminescence (OLPL) crystals were prepared. The crystal structure of the prepared OLPL crystal was elucidated and the guideline for the design of OLPL crystal was clarified. LPL was observed in OLPL crystals prepared with TMB as the guest molecule and 1,2-bis(diphenylphosphino)ethane as the host molecule. XRD measurements of the OLPL crystals suggest that the guest molecule is a solid solution substituted in the stable crystal structure of the host molecule in a lattice-shrinking direction.