Single-handed helical phenolic resin nanofibers were synthesized through a supramolecular templating approach using the supramolecular self-assemblies of a pair of chiral low-molecular-weight amphiphiles as the templa...Single-handed helical phenolic resin nanofibers were synthesized through a supramolecular templating approach using the supramolecular self-assemblies of a pair of chiral low-molecular-weight amphiphiles as the templates and 2,4-dihydroxybenzoic acid and formaldehyde as the precursors.The phenolic resin nanofibers were characterized using field-emission scanning electron microscopy,transmission electron microscopy and diffused reflection circular dichroism.The results indicated that the chirality of the supramolecular self-assemblies was successfully transferred to the phenolic resin nanofibers.The left- and right-handed helical phenolic resin nanofibers exhibited opposite optical activity.展开更多
Single-handed helical and C-shaped 3-aminophenol-formaldehyde resin nanotubes were prepared via a supramolecular templating approach. The chiral templates and 3-aminophenol were initially organized into helical nanori...Single-handed helical and C-shaped 3-aminophenol-formaldehyde resin nanotubes were prepared via a supramolecular templating approach. The chiral templates and 3-aminophenol were initially organized into helical nanoribbons, followed by the adsorption of formaldehyde onto the surfaces of the helical nanoribbons. Subsequent to polymerization and further thermosetting of the resin oligomers, 3-aminophenol-formaldehyde resin nanotubes were obtained after removing the templates. When low amounts of 3-aminophenol were added, straight C-shaped 3-aminophenol-formaldehyde resin nanotubes were obtained. Increasing the amount of added 3-aminophenol led to the formation of single-handed helical nanotubes instead. When the single-handed helical resin nanotubes were car- bonized at 900 ~C under Ar, single-handed helical carbonaceous nanotubes were obtained. Raman spectrum indicates that this carbon is predominantly amorphous. Circular dichroism spectra illustrate that both the helical resin nanotubes and the carbonaceous nanotubes exhibit optical activity. This work indicates that the added amount and the edge-adsorption mode of the precursors on the templates determine the final morphology and chirality of the products.展开更多
基金supported by the Natural Science Foundation of Jiangsu Province(No.BK2011354)the Priority Academic Program Development of Jiangsu High Education Institutions(PAPD,No. YX10900114)the National Natural Science Foundation of China(No.21104053)
文摘Single-handed helical phenolic resin nanofibers were synthesized through a supramolecular templating approach using the supramolecular self-assemblies of a pair of chiral low-molecular-weight amphiphiles as the templates and 2,4-dihydroxybenzoic acid and formaldehyde as the precursors.The phenolic resin nanofibers were characterized using field-emission scanning electron microscopy,transmission electron microscopy and diffused reflection circular dichroism.The results indicated that the chirality of the supramolecular self-assemblies was successfully transferred to the phenolic resin nanofibers.The left- and right-handed helical phenolic resin nanofibers exhibited opposite optical activity.
基金Supported by the National Natural Science Foundation of China(Nos.51473106, 21574095) and the Science and Technology Plan(Nano Special) of Suzhou, China(No.ZXG201415).
文摘Single-handed helical and C-shaped 3-aminophenol-formaldehyde resin nanotubes were prepared via a supramolecular templating approach. The chiral templates and 3-aminophenol were initially organized into helical nanoribbons, followed by the adsorption of formaldehyde onto the surfaces of the helical nanoribbons. Subsequent to polymerization and further thermosetting of the resin oligomers, 3-aminophenol-formaldehyde resin nanotubes were obtained after removing the templates. When low amounts of 3-aminophenol were added, straight C-shaped 3-aminophenol-formaldehyde resin nanotubes were obtained. Increasing the amount of added 3-aminophenol led to the formation of single-handed helical nanotubes instead. When the single-handed helical resin nanotubes were car- bonized at 900 ~C under Ar, single-handed helical carbonaceous nanotubes were obtained. Raman spectrum indicates that this carbon is predominantly amorphous. Circular dichroism spectra illustrate that both the helical resin nanotubes and the carbonaceous nanotubes exhibit optical activity. This work indicates that the added amount and the edge-adsorption mode of the precursors on the templates determine the final morphology and chirality of the products.