An improved dual-channel 4H-SiC MESFET with high doped n-type surface layer and step-gate structure is proposed, and the static and dynamic electrical performances are analyzed.A high doped n-type surface layer is app...An improved dual-channel 4H-SiC MESFET with high doped n-type surface layer and step-gate structure is proposed, and the static and dynamic electrical performances are analyzed.A high doped n-type surface layer is applied to obtain a low source parasitic series resistance, while the step-gate structure is utilized to reduce the gate capacitance by the elimination of the depletion layer extension near the gate edge, thereby improving the RF characteristics and still maintaining a high breakdown voltage and a large drain current in comparison with the published SiC MESFETs with a dual-channel layer.Detailed numerical simulations demonstrate that the gate-to-drain capacitance, the gate-to-source capacitance, and the source parasitic series resistance of the proposed structure are about 4%, 7%, and 18% smaller than those of the dual-channel structure, which is responsible for 1.4 and 6 GHz improvements in the cut-off frequency and the maximum oscillation frequency.展开更多
Based on the transverse Ising model in the framework of the mean field approximation, this paper discusses a ferroelectric bilayer film with the surface transition layers within each constituent slab and an antiferroe...Based on the transverse Ising model in the framework of the mean field approximation, this paper discusses a ferroelectric bilayer film with the surface transition layers within each constituent slab and an antiferroelectric interracial coupling between two slabs. The hysteresis loop of a bilayer film is investigated. The results show that the surface transition layer in a ferroelectric bilayer film plays a significant role in realizing the multiple-state memory.展开更多
To study the damage to an elastic cylinder immersed in fluid, a model of an elastic cylinder wrapped with a porous medium immersed in fluid is designed. This structure can both identify the properties of guided waves ...To study the damage to an elastic cylinder immersed in fluid, a model of an elastic cylinder wrapped with a porous medium immersed in fluid is designed. This structure can both identify the properties of guided waves in a more practical model and address the relationship between the cylinder damage degree and the surface and surrounding medium. The principal motivation is to perform a detailed quantitative analysis of the longitudinal mode and flexural mode in an elastic cylinder wrapped with a porous medium immersed in fluid. The frequency equations for the propagation of waves are derived each for a pervious surface and an impervious surface by employing Biot theory. The influences of the various parameters of the porous medium wrapping layer on the phase velocity and attenuation are discussed. The results show that the influences of porosity on the dispersion curves of guided waves are much more significant than those of thickness,whereas the phase velocity is independent of the static permeability. There is an apparent “mode switching” between the two low-order modes. The characteristics of attenuation are in good agreement with the results from the dispersion curves.This work can support future studies for optimizing the theory on detecting the damage to cylinder or pipeline.展开更多
Asphalt pavement is currently one of the main components in the construction of roads and bridges.However,from a practical point of view,various quality problems are prone to occur in the surface layer of asphalt pave...Asphalt pavement is currently one of the main components in the construction of roads and bridges.However,from a practical point of view,various quality problems are prone to occur in the surface layer of asphalt pavement,which will lead to the poor overall quality of road and bridge projects.Therefore,it should be applied reasonably.Advanced testing technologies are used to test the mixture quality,compaction,segregation,thickness,and other aspects of the asphalt pavement surface layer,so as to improve the quality of the asphalt pavement surface layer,and then improve the overall quality of road and bridge construction.Therefore,this paper mainly analyzes the technologies for asphalt pavement surface layer testing in road and bridge engineering construction.展开更多
The concentrations, accumulation and sources of 15 polycyclic aromatic hydrocarbons (PAHs) had been studied or evaluated in the surface layer sediments of Taizhou Bay, China. It showed that the concentrations of PAH...The concentrations, accumulation and sources of 15 polycyclic aromatic hydrocarbons (PAHs) had been studied or evaluated in the surface layer sediments of Taizhou Bay, China. It showed that the concentrations of PAHs ranged from 85.4 to 167.6 ng/g (averaged 138.62 ng/g), and the highest level was found in Jiao Jiang Dock. Percentages of 2-, 3-, 4-, 5- and 6-cyclic aromatic hydrocarbons were 7.8 %, 42.1%, 33.3 %, 9.6 % and 7.2 % respectively. The accumulation indices of PAHs ranged from 532.7 to 1068.9 (averaged 807.5), and the index of Phenanthrene was the highest (122.7), while that of Benzo (a) Pyrene was the lowest (2.7) among them. In Taizhou Bay, PAHs in surface layer sediments came mainly from coal burning, partly from direct pollution of petroleum hydrocarbons.展开更多
Boundary conditions for momentum and vorticity have been precisely derived, paying attention to the physical meaning of each mathematical expression of terms rigorously obtained from the basic equations: Navier-Stokes...Boundary conditions for momentum and vorticity have been precisely derived, paying attention to the physical meaning of each mathematical expression of terms rigorously obtained from the basic equations: Navier-Stokes equation and the equation of vorticity transport. It has been shown first that a contribution of fluid molecules crossing over a conceptual surface moving with fluid velocity due to their fluctuating motion is essentially important to understanding transport phenomena of momentum and vorticity. A notion of surface layers, which are thin layers at both sides of an interface, has been introduced next to elucidate the transporting mechanism of momentum and vorticity from one phase to the other at an interface through which no fluid molecules are crossing over. A fact that a size of δV, in which reliable values of density, momentum, and velocity of fluid are respectively defined as a volume-averaged mass of fluid molecules, a volume-averaged momentum of fluid molecules and a mass-averaged velocity of fluid molecules, is not infinitesimal but finite has been one of the key factors leading to the boundary conditions for vorticity at an interface between two fluids. The most distinguished characteristics of the boundary conditions derived here are the zero-value conditions for a normal component of momentum flux and tangential components of vorticity flux, at an interface.展开更多
[Objective] This study aimed to investigation the effects of straw covering and different types of potassium fertilizer on salinity accumulation in surface layer of tobacco-planted paddy soil in southern China. [Metho...[Objective] This study aimed to investigation the effects of straw covering and different types of potassium fertilizer on salinity accumulation in surface layer of tobacco-planted paddy soil in southern China. [Method] Tobacco variety ‘Yunyan87’ was used as the experimental material to investigate the effects of salinity accumulation in surface layer of tobacco-planted paddy soil on the growth and development of flue-cured tobacco using different types of potassium fertilizer and mulching cultivation methods. [Result] The results showed that K+ , Ca2+ , SO42and NO3-were the major salt ions in topsoil at different growth stages of flue-cured tobacco, Na + and Mg2+ contents were also relatively high at vigorous growth stage, indicating that these salt ions were easily accumulated in surface layer of soil; to be specific, the absolute increase of salt ion concentration showed a decreasing order of K+ SO42- NO3-Ca2+ Mg2+ Na+ Cl-, while the relative increase of salt ion concentration showed a decreasing order of Ca2+ K+ Na+ NO3-SO42-Mg2+ Cl-. At 60 d posttransplanting, total salt content in topsoil reached the minimum of 359.1 mg/kg in Treatment 2, total salt content in topsoil reached the maximum of 536.1 mg/kg in Treatment 5 (CK), which was significantly higher than that in other treatments. At 90 d post-transplanting, no significant difference was observed in total salt content among various treatments. At harvesting period, total salt content in topsoil reached the maximum of 3 278.4 mg/kg in Treatment 1, which was significantly higher than that in other treatments. Topsoil pH showed no significant differences among various treatments at three different periods, ranging from 5.39 to 5.59. Straw covering could effectively reduce salt content in topsoil, accelerate vigorous growth of tobacco, shorten vigorous growth period and increase plant height, leaf number and lead area; at vigorous growth stage, root vitality and root volume of tobacco were improved, but the yield and output value were relatively low. Major agronomic traits and yield of tobacco showed no significant difference among various treatments. Output value of tobacco reached the maximum of 24 196.8 yuan/hm2 in Treatment 3, which was significantly higher than that in other treatments. [Conclusion] Appropriate types and proportions of potassium fertilizer and straw covering can effectively reduce the total salt content in tobacco-planted paddy soil and increase the effective supply amount of K+ , Ca2+ , SO42-and NO3-, thereby promoting and improving the root vitality of tobacco, which is conducive to the growth and development of tobacco and will eventually enhance the yield, quality and economic benefits of flue-cured tobacco.展开更多
The Regional Atmospheric Modeling System (RAMS) and the computational fluid dynamics (CFD) codes known as FLUENT are combinatorially applied in a multi-scale numerical simulation of the urban surface layer (USL)...The Regional Atmospheric Modeling System (RAMS) and the computational fluid dynamics (CFD) codes known as FLUENT are combinatorially applied in a multi-scale numerical simulation of the urban surface layer (USL). RAMS and FLUENT are combined as a multi-scale numerical modeling system, in which the RAMS simulated data are delivered to the computational model for FLUENT simulation in an offline way. Numerical simulations are performed to present and preliminarily validate the capability of the multi-scale modeling system, and the results show that the modeling system can reasonably provide information on the meteorological elements in an urban area from the urban scale to the city-block scale, especially the details of the turbulent flows within the USL.展开更多
Turbulence characteristics of an atmospheric surface layer over a coastal mountain area were investigated under different coordinate frames. Performances of three methods of coordinate rotation: double rotation (DR...Turbulence characteristics of an atmospheric surface layer over a coastal mountain area were investigated under different coordinate frames. Performances of three methods of coordinate rotation: double rotation (DR), triple rotation (TR), and classic planar-fit rotation (PF) were examined in terms of correction of eddy covariance flux. Using the commonly used DR and TR methods, unreasonable rotation angles are encountered at low wind speeds and cause significant run-to-run errors of some turbulence characteristics. The PF method rotates the coordinate system to an ensemble-averaged plane, and shows large tilt error due to an inaccurate fit plane over variable terrain slopes. In this paper, we propose another coordinate rotation scheme. The observational data were separated into two groups according to wind direction. The PF method was adapted to find an ensemble-averaged streamline plane for each group of hourly runs with wind speed exceeding 1.0 m s-1. Then, the coordinate systems were rotated to their respective best- fit planes for all available hourly observations. We call this the PF10 method. The implications of tilt corrections for the turbulence characteristics are discussed with a focus on integral turbulence characteristics, the spectra of wind-velocity components, and sensible heat and momentum fluxes under various atmospheric stabilities. Our results show that the adapted application of PF provides greatly improved estimates of integral turbulence characteristics in complex terrain and maintains data quality. The comparisons of the sensible heat fluxes for four coordinate rotation methods to fluxes before correction indicate that the PF10 scheme is the best to preserve consistency between fluxes.展开更多
As an important physical process at the air-sea interface, wave movement and breaking have a significant effect on the ocean surface mixed layer (OSML). When breaking waves occur at the ocean surface, turbulent kineti...As an important physical process at the air-sea interface, wave movement and breaking have a significant effect on the ocean surface mixed layer (OSML). When breaking waves occur at the ocean surface, turbulent kinetic energy (TKE) is input downwards, and a sublayer is formed near the surface and turbulence vertical mixing is intensively enhanced. A one-dimensional ocean model including the Mellor-Yamada level 2.5 turbulence closure equations was employed in our research on variations in turbulent energy budget within OSML. The influence of wave breaking could be introduced into the model by modifying an existing surface boundary condition of the TKE equation and specifying its input. The vertical diffusion and dissipation of TKE were effectively enhanced in the sublayer when wave breaking was considered. Turbulent energy dissipated in the sublayer was about 92.0% of the total depth-integrated dissipated TKE, which is twice higher than that of non-wave breaking. The shear production of TKE decreased by 3.5% because the mean flow fields tended to be uniform due to wave-enhanced turbulent mixing. As a result, a new local equilibrium between diffusion and dissipation of TKE was reached in the wave-enhanced layer. Below the sublayer, the local equilibrium between shear production and dissipation of TKE agreed with the conclusion drawn from the classical law-of-the-wall (Craig and Banner, 1994).展开更多
This work deals with the degradation of AZ31 and AZ91 magnesium alloys when they are exposed to three types of physiological media for seven days at 37°C:Ringer's,Hanks\and simulated body fluid(SBF)solutions....This work deals with the degradation of AZ31 and AZ91 magnesium alloys when they are exposed to three types of physiological media for seven days at 37°C:Ringer's,Hanks\and simulated body fluid(SBF)solutions.A combination of immersions tests and surface characterisation methods were employed to evaluate the attack on the surface,and the stability of the formed corrosion product layers for each alloy/electrolyte system.Measurements of the Mg-ion released into the electrolytes were also carried out in order to be correlated with the degradation of the alloys.Electrochemical impedance spectroscopy(EIS)and potentiodynamic polarisation(PDP)techniques were employed to compare the performance of the alloys in these different aggressive electrolytes.According to the obtained results,the Mg-alloys exposed to Hanks'media were the less affected,which fact was attributed to a higher stability of the corrosion products layer formed in this medium,in comparison of those formed in Ringer's and SBF solutions.In add让ion,the corrosion damage was lower for AZ91 than for AZ31 alloy in all environments due to its higher Al content.The mass loss rates calculated from both immersion tests and electrochemical methods followed the same trend for comparative purposes between alloys.展开更多
Large eddy simulation (LES) is used to investigate contrasting dynamic characteristics of shear turbulence (ST) and Langmuir circulation (LC) in the surface mixed layer (SML). ST is usually induced by wind for...Large eddy simulation (LES) is used to investigate contrasting dynamic characteristics of shear turbulence (ST) and Langmuir circulation (LC) in the surface mixed layer (SML). ST is usually induced by wind forcing in SML. LC can be driven by wave-current interaction that includes the roles of wind, wave and vortex forcing. The LES results show that LC suppresses the horizontal velocity and greatly modifies the downwind velocity profile, but increases the vertical velocity. The strong downweUing jets of LC accelerate and increase the downward transport of energy as compared to ST. The vertical eddy viscosity Km of LC is much larger than that of ST. Strong mixing induced by LC has two locations. They are located in the 26s-36s (Stokes depth scale) and the lower layer of the SML, respectively. Its value and position change periodically with time. In contrast, maximum Km induced by ST is located in the middle depth of the SML. The turbulent kinetic energy (TKE) generated by LC is larger than that by ST. The differences in vertical distributions of TKE and Krn are evident. Therefore, the parameterization of LC cannot be solely based on TKE. For deep SML, the convection of large-scale eddies in LC plays a main role in downward transport of energy and LC can induce stronger velocity shear (S2) near the SML base. In addition, the large-scale eddies and Sz induced by LC is changing all the time, which needs to be fully considered in the parameterization of LC.展开更多
The stratification of the atmospheric surface layer(ASL)plays an important role in regulating the water vapor and heat exchange across the lake–air interface.Based on one year of data measured by the eddy covariance ...The stratification of the atmospheric surface layer(ASL)plays an important role in regulating the water vapor and heat exchange across the lake–air interface.Based on one year of data measured by the eddy covariance technique over Erhai Lake in 2015,the ASL stability(ζ)was divided into six ranges,including unstable(-1ζ<-0:1),weakly unstable(-0:1ζ<-0:01),near-neutral1(-0:01ζ<0),near-neutral2(0ζ<0:01),weakly stable(0:01ζ<0:1),and stable(0:1ζ<1).The characteristics of ASL stability conditions and factors controlling the latent(LE)and sensible heat(H)fluxes under different stability conditions were analyzed in this study.The stability conditions of Erhai Lake have noticeably seasonal and diurnal variation,with the nearneutral and(weakly)stable stratification usually occurring before July,with frequencies of 51.7%and 23.3%,respectively,but most of the(weakly)unstable stratification was observed after July,with a frequency of 59.8%.Large evaporation occurred even in stable atmospheric conditions,due to the coupled effects of the relatively larger lake–air vapor pressure difference and wind speed.The relative controls of LE and H by different atmospheric variables are largely dependent on the stability conditions.In stable and unstable ranges,LE is closely correlated with the vapor pressure difference,whereas in weakly unstable to weakly stable ranges,it is primarily controlled by wind speed.H is related to wind speed and the lake–air temperature difference under stable conditions,but shows no obvious relationship under unstable conditions.展开更多
This work presented the characteristics of two gear teeth finishing methods, due to the properties of gear teeth surface layer obtained at the tooth working depth. These methods are: 1) the teeth carburization, harden...This work presented the characteristics of two gear teeth finishing methods, due to the properties of gear teeth surface layer obtained at the tooth working depth. These methods are: 1) the teeth carburization, hardening to a hardness of HRC 60-62 and then grinding, 2) the soft gear shaving as the final mechanical treatment and then carburizing and hardening to the hardness of HRC60-62. This work included the test results of the contact fatigue strength carried out on the circulating power system. The Wohler curves were plotted due to the obtained results, as the basis for the practical evaluation of the considered gear finishing methods. The parameters like volume distribution of the voids, content of the retained austenite, compressive residual stress value, but also the results of contact fatigue strength tests, are more favorable for the teeth shaving method than for the teeth grinding method.展开更多
This study uses a large eddy simulation (LES) model to investigate the turbulence processes in the ocean surface boundary layer at Zhangzi Island offshore. Field measurements at Zhangzi Island (39°N, 122°...This study uses a large eddy simulation (LES) model to investigate the turbulence processes in the ocean surface boundary layer at Zhangzi Island offshore. Field measurements at Zhangzi Island (39°N, 122°E) during July 2009 are used to drive the LES model. The LES results capture a clear diurnal cycle in the oceanic turbulence boundary layer. The process of the heat penetration and heat distribution characteristics are analyzed through the heat flux results from the LES and their differences between two diurnal cycles are discussed as well. Energy balance and other dynamics are investigated which show that the tide-induced shear production is the main source of the turbulence energy that balanced dissipation. Momentum flux near the surface shows better agreement with atmospheric data computed by the eddy correlation method than those computed by bulk formula.展开更多
In southern China, cold air is a common weather process during the winter season; it can cause strong wind, sharp temperature decreases, and even the snow or freezing rain events. However, the features of the atmosphe...In southern China, cold air is a common weather process during the winter season; it can cause strong wind, sharp temperature decreases, and even the snow or freezing rain events. However, the features of the atmospheric boundary layer during cold air passage are not clearly understood due to the lack of comprehensive observation data, especially regarding turbulence. In this study, four-layer gradient meteorological observation data and one-layer, 10-Hz ultrasonic anemometer-thermometer monitoring data from the northern side of Poyang Lake were employed to study the main features of the surface boundary layer during a strong cold-air passage over southern China. The results show that, with the passage of a cold air front, the wind speed exhibits low-frequency variations and that the wind systematically descends. During the strong wind period, the wind speed increases with height in the surface layer. Regular gust packets are superimposed on the basic strong wind flow. Before the passage of cold air, the wind gusts exhibit a coherent structure. The wind and turbulent momentum fluxes are small, although the gusty wind momentum flux is slightly larger than the turbulent momentum flux. However, during the invasion of cold air, both the gusty wind and turbulent momentum fluxes increase rapidly with wind speed, and the turbulent momentum flux is larger than the gusty wind momentum flux during the strong wind period. After the cold air invasion, this structure almost disappears.展开更多
The surface infiltrated composite (Ni/WC) layers on gray iron substrate were fabricated through a vacuum infiltration casting technique (VICT) using Ni-based composite powder with different WC particles content as...The surface infiltrated composite (Ni/WC) layers on gray iron substrate were fabricated through a vacuum infiltration casting technique (VICT) using Ni-based composite powder with different WC particles content as raw materials.The microstructures of surface infiltrated composite layer,the interface structures between surface composite layer and the substrate,the changes of macro-hardness with the increasing of WC content and the micro-hardness distribution are investigated.The infiltrated composite layer includes a surface composite layer and a transition layer,and the thickness of the transition layer decreases with the increasing content of WC.The thickness of transition layer with 20%WC content in the surface infiltrated composite layer was 170 μm which was the thickest for all transition layers with different WC content.The surface composite layer was mainly composed of WC,W2C,FeB and NiB,along with Ni-Cr-Fe,Ni (Cr) solid solution,Ni (Si) solid solution and Ni (Fe) solid solution.The transition layer was composed of Ni (Cr) solid solution,Ni (Fe) solid solution,Ni (Si) solid solution,Fe (Ni) solid solution and eutectic.The surface macro-hardness and micro-hardness of the infiltrated layer had been evaluated.The macro-hardness of the surface composite layer decreases with the WC content increasing,and the average macro-hardness is HRC60.The distribution of micro-hardness presents gradient change.The average micro-hardness of the infiltrated layer is about HV1000.展开更多
During hard cutting process there is severe thermodynamic coupling effect between cutting tool and workpiece, which causes quenching effect on finished surfaces under certain conditions. However, material phase transf...During hard cutting process there is severe thermodynamic coupling effect between cutting tool and workpiece, which causes quenching effect on finished surfaces under certain conditions. However, material phase transformation mechanism of heat treatment in cutting process is different from the one in traditional process, which leads to changes of the formation mechanism of damaged layer on machined workpiece surface. This paper researches on the generation mechanism of damaged layer on machined surface in the process of PCBN tool hard cutting hardened steel Cr12MoV. Rules of temperature change on machined surface and subsurface are got by means of finite element simulation. In phase transformation temperature experiments rapid transformation instrument is employed, and the effect of quenching under cutting conditions on generation of damaged layer is revealed. Based on that, the phase transformation points of temperature under cutting conditions are determined. By experiment, the effects of cutting speed and tool wear on white layer thickness in damaged layer are revealed. The temperature distribution law of third deformation zone is got by establishing the numerical prediction model, and thickness of white layer in damaged layer is predicted, taking the tool wear effect into consideration. The experimental results show that the model prediction is accurate, and the establishment of prediction model provides a reference for wise selection of parameters in precise hard cutting process. For the machining process with high demanding on surface integrity, the generation of damaged layer on machined surface can be controlled precisely by using the prediction model.展开更多
This paper reports a case study of atmospheric stability effect on dimethyl sulfide(DMS) concentration in the air. Investigation includes model simulation and field measurements over the Pacific Ocean. DMS concentrati...This paper reports a case study of atmospheric stability effect on dimethyl sulfide(DMS) concentration in the air. Investigation includes model simulation and field measurements over the Pacific Ocean. DMS concentration in surface sea water and in the air were measured during a research cruise from Hawaii to Tahiti. The diurnal variation of air temperature over the sea surface differed from the diurnal cycle of sea surface temperature because of the high heat capacity of sea water. The diurnal cycle of average DMS concentration in the air was studied in relation to the atmospheric stability parameter and surface heat flux. All these parameters had minima at noon and maxima in the early morning. The correlation coefficient of the air DMS concentration with wind speed (at 15 m high) was 0. 64. The observed concentrations of DMS in the equatorial marine surface layer and their diurnal variability agree well with model simulations. The simulated results indicate that the amplitude of the cycle and the mean concentration of DMS are dependent on the atmospheric stratifications and wind speed.展开更多
Recently, people are confused with two opposite variations of elastic modulus with decreasing size of nano scale sample: elastic modulus either decreases or increases with decreasing sample size. In this paper, based...Recently, people are confused with two opposite variations of elastic modulus with decreasing size of nano scale sample: elastic modulus either decreases or increases with decreasing sample size. In this paper, based on intermolecular potentials and a one dimensional model, we provide a unified understanding of the two opposite size effects. Firstly, we analyzed the microstructural variation near the surface of an fcc nanofilm based on the Lennard-Jones potential. It is found that the atomic lattice near the surface becomes looser in comparison with the bulk, indicating that atoms in the bulk are located at the balance of repulsive forces, and the elastic moduli decrease with the decreasing thickness of the film accordingly. In addition, the decrease in moduli should be attributed to both the looser surface layer and smaller coordination number of surface atoms. Furthermore, it is found that both looser and tighter lattice near the surface can appear for a general pair potential and the governing mechanism should be attributed to the surplus of the nearest force to all other long range interactions in the pair potential. Surprisingly, the surplus can be simply expressed by a sum of the long range interactions and the sum being positive or negative determines the looser or tighter lattice near surface respectively. To justify this concept, we examined ZnO in terms of Buckingham potential with long range Coulomb interactions. It is found that compared to its bulk lattice, the ZnO lattice near the surface becomes tighter, indicating the atoms in the bulk are located at the balance of attractive forces, owing to the long range Coulomb interaction. Correspondingly, the elastic modulus of one-dimensional ZnO chain increases with decreasing size. Finally, a kind of many-body potential for Cu was examined. In this case, the surface layer becomes tighter than the bulk and the modulus increases with deceasing size, owing to the long range repulsive pair interaction, as well as the cohesive many-body interaction caused by the electron redistribution.展开更多
基金supported by the State Key Development Program for Basic Research of China(No.51327010101)
文摘An improved dual-channel 4H-SiC MESFET with high doped n-type surface layer and step-gate structure is proposed, and the static and dynamic electrical performances are analyzed.A high doped n-type surface layer is applied to obtain a low source parasitic series resistance, while the step-gate structure is utilized to reduce the gate capacitance by the elimination of the depletion layer extension near the gate edge, thereby improving the RF characteristics and still maintaining a high breakdown voltage and a large drain current in comparison with the published SiC MESFETs with a dual-channel layer.Detailed numerical simulations demonstrate that the gate-to-drain capacitance, the gate-to-source capacitance, and the source parasitic series resistance of the proposed structure are about 4%, 7%, and 18% smaller than those of the dual-channel structure, which is responsible for 1.4 and 6 GHz improvements in the cut-off frequency and the maximum oscillation frequency.
文摘Based on the transverse Ising model in the framework of the mean field approximation, this paper discusses a ferroelectric bilayer film with the surface transition layers within each constituent slab and an antiferroelectric interracial coupling between two slabs. The hysteresis loop of a bilayer film is investigated. The results show that the surface transition layer in a ferroelectric bilayer film plays a significant role in realizing the multiple-state memory.
基金Project supported by the National Natural Science Foundation of China (Grant No.12174085)the Postgraduate Research and Practice Innovation Program of Jiangsu Province,China (Grant No.KYCX21_0478)。
文摘To study the damage to an elastic cylinder immersed in fluid, a model of an elastic cylinder wrapped with a porous medium immersed in fluid is designed. This structure can both identify the properties of guided waves in a more practical model and address the relationship between the cylinder damage degree and the surface and surrounding medium. The principal motivation is to perform a detailed quantitative analysis of the longitudinal mode and flexural mode in an elastic cylinder wrapped with a porous medium immersed in fluid. The frequency equations for the propagation of waves are derived each for a pervious surface and an impervious surface by employing Biot theory. The influences of the various parameters of the porous medium wrapping layer on the phase velocity and attenuation are discussed. The results show that the influences of porosity on the dispersion curves of guided waves are much more significant than those of thickness,whereas the phase velocity is independent of the static permeability. There is an apparent “mode switching” between the two low-order modes. The characteristics of attenuation are in good agreement with the results from the dispersion curves.This work can support future studies for optimizing the theory on detecting the damage to cylinder or pipeline.
文摘Asphalt pavement is currently one of the main components in the construction of roads and bridges.However,from a practical point of view,various quality problems are prone to occur in the surface layer of asphalt pavement,which will lead to the poor overall quality of road and bridge projects.Therefore,it should be applied reasonably.Advanced testing technologies are used to test the mixture quality,compaction,segregation,thickness,and other aspects of the asphalt pavement surface layer,so as to improve the quality of the asphalt pavement surface layer,and then improve the overall quality of road and bridge construction.Therefore,this paper mainly analyzes the technologies for asphalt pavement surface layer testing in road and bridge engineering construction.
文摘The concentrations, accumulation and sources of 15 polycyclic aromatic hydrocarbons (PAHs) had been studied or evaluated in the surface layer sediments of Taizhou Bay, China. It showed that the concentrations of PAHs ranged from 85.4 to 167.6 ng/g (averaged 138.62 ng/g), and the highest level was found in Jiao Jiang Dock. Percentages of 2-, 3-, 4-, 5- and 6-cyclic aromatic hydrocarbons were 7.8 %, 42.1%, 33.3 %, 9.6 % and 7.2 % respectively. The accumulation indices of PAHs ranged from 532.7 to 1068.9 (averaged 807.5), and the index of Phenanthrene was the highest (122.7), while that of Benzo (a) Pyrene was the lowest (2.7) among them. In Taizhou Bay, PAHs in surface layer sediments came mainly from coal burning, partly from direct pollution of petroleum hydrocarbons.
文摘Boundary conditions for momentum and vorticity have been precisely derived, paying attention to the physical meaning of each mathematical expression of terms rigorously obtained from the basic equations: Navier-Stokes equation and the equation of vorticity transport. It has been shown first that a contribution of fluid molecules crossing over a conceptual surface moving with fluid velocity due to their fluctuating motion is essentially important to understanding transport phenomena of momentum and vorticity. A notion of surface layers, which are thin layers at both sides of an interface, has been introduced next to elucidate the transporting mechanism of momentum and vorticity from one phase to the other at an interface through which no fluid molecules are crossing over. A fact that a size of δV, in which reliable values of density, momentum, and velocity of fluid are respectively defined as a volume-averaged mass of fluid molecules, a volume-averaged momentum of fluid molecules and a mass-averaged velocity of fluid molecules, is not infinitesimal but finite has been one of the key factors leading to the boundary conditions for vorticity at an interface between two fluids. The most distinguished characteristics of the boundary conditions derived here are the zero-value conditions for a normal component of momentum flux and tangential components of vorticity flux, at an interface.
基金Supported by Project of Guangdong Zhongyan Industry Limited Liability Company[YYG15JO-QK(2011)-004]~~
文摘[Objective] This study aimed to investigation the effects of straw covering and different types of potassium fertilizer on salinity accumulation in surface layer of tobacco-planted paddy soil in southern China. [Method] Tobacco variety ‘Yunyan87’ was used as the experimental material to investigate the effects of salinity accumulation in surface layer of tobacco-planted paddy soil on the growth and development of flue-cured tobacco using different types of potassium fertilizer and mulching cultivation methods. [Result] The results showed that K+ , Ca2+ , SO42and NO3-were the major salt ions in topsoil at different growth stages of flue-cured tobacco, Na + and Mg2+ contents were also relatively high at vigorous growth stage, indicating that these salt ions were easily accumulated in surface layer of soil; to be specific, the absolute increase of salt ion concentration showed a decreasing order of K+ SO42- NO3-Ca2+ Mg2+ Na+ Cl-, while the relative increase of salt ion concentration showed a decreasing order of Ca2+ K+ Na+ NO3-SO42-Mg2+ Cl-. At 60 d posttransplanting, total salt content in topsoil reached the minimum of 359.1 mg/kg in Treatment 2, total salt content in topsoil reached the maximum of 536.1 mg/kg in Treatment 5 (CK), which was significantly higher than that in other treatments. At 90 d post-transplanting, no significant difference was observed in total salt content among various treatments. At harvesting period, total salt content in topsoil reached the maximum of 3 278.4 mg/kg in Treatment 1, which was significantly higher than that in other treatments. Topsoil pH showed no significant differences among various treatments at three different periods, ranging from 5.39 to 5.59. Straw covering could effectively reduce salt content in topsoil, accelerate vigorous growth of tobacco, shorten vigorous growth period and increase plant height, leaf number and lead area; at vigorous growth stage, root vitality and root volume of tobacco were improved, but the yield and output value were relatively low. Major agronomic traits and yield of tobacco showed no significant difference among various treatments. Output value of tobacco reached the maximum of 24 196.8 yuan/hm2 in Treatment 3, which was significantly higher than that in other treatments. [Conclusion] Appropriate types and proportions of potassium fertilizer and straw covering can effectively reduce the total salt content in tobacco-planted paddy soil and increase the effective supply amount of K+ , Ca2+ , SO42-and NO3-, thereby promoting and improving the root vitality of tobacco, which is conducive to the growth and development of tobacco and will eventually enhance the yield, quality and economic benefits of flue-cured tobacco.
基金This study was supported by the National Natural Science Foundation of China (Grant Nos. 40233030, 40405004, 40405014).
文摘The Regional Atmospheric Modeling System (RAMS) and the computational fluid dynamics (CFD) codes known as FLUENT are combinatorially applied in a multi-scale numerical simulation of the urban surface layer (USL). RAMS and FLUENT are combined as a multi-scale numerical modeling system, in which the RAMS simulated data are delivered to the computational model for FLUENT simulation in an offline way. Numerical simulations are performed to present and preliminarily validate the capability of the multi-scale modeling system, and the results show that the modeling system can reasonably provide information on the meteorological elements in an urban area from the urban scale to the city-block scale, especially the details of the turbulent flows within the USL.
基金supported by the National High Technology Research and Development Program of China(Grant No.2007AA022201)the National Special Fund for Water(Grant No.2008ZX07103007)+1 种基金the National Basic Research Program of China (Grant Nos.2010CB428503 and 2011CB403406)the National Natural Science Foundation of China(Grant Nos. 40805006 and 41075012)
文摘Turbulence characteristics of an atmospheric surface layer over a coastal mountain area were investigated under different coordinate frames. Performances of three methods of coordinate rotation: double rotation (DR), triple rotation (TR), and classic planar-fit rotation (PF) were examined in terms of correction of eddy covariance flux. Using the commonly used DR and TR methods, unreasonable rotation angles are encountered at low wind speeds and cause significant run-to-run errors of some turbulence characteristics. The PF method rotates the coordinate system to an ensemble-averaged plane, and shows large tilt error due to an inaccurate fit plane over variable terrain slopes. In this paper, we propose another coordinate rotation scheme. The observational data were separated into two groups according to wind direction. The PF method was adapted to find an ensemble-averaged streamline plane for each group of hourly runs with wind speed exceeding 1.0 m s-1. Then, the coordinate systems were rotated to their respective best- fit planes for all available hourly observations. We call this the PF10 method. The implications of tilt corrections for the turbulence characteristics are discussed with a focus on integral turbulence characteristics, the spectra of wind-velocity components, and sensible heat and momentum fluxes under various atmospheric stabilities. Our results show that the adapted application of PF provides greatly improved estimates of integral turbulence characteristics in complex terrain and maintains data quality. The comparisons of the sensible heat fluxes for four coordinate rotation methods to fluxes before correction indicate that the PF10 scheme is the best to preserve consistency between fluxes.
基金Supported by the NSFC (No. 40476008)Knowledge Innovation Programs of the Chinese Academy of Sciences (No. KZCX3-SW-222)the NSFDYS (No. 40425015)
文摘As an important physical process at the air-sea interface, wave movement and breaking have a significant effect on the ocean surface mixed layer (OSML). When breaking waves occur at the ocean surface, turbulent kinetic energy (TKE) is input downwards, and a sublayer is formed near the surface and turbulence vertical mixing is intensively enhanced. A one-dimensional ocean model including the Mellor-Yamada level 2.5 turbulence closure equations was employed in our research on variations in turbulent energy budget within OSML. The influence of wave breaking could be introduced into the model by modifying an existing surface boundary condition of the TKE equation and specifying its input. The vertical diffusion and dissipation of TKE were effectively enhanced in the sublayer when wave breaking was considered. Turbulent energy dissipated in the sublayer was about 92.0% of the total depth-integrated dissipated TKE, which is twice higher than that of non-wave breaking. The shear production of TKE decreased by 3.5% because the mean flow fields tended to be uniform due to wave-enhanced turbulent mixing. As a result, a new local equilibrium between diffusion and dissipation of TKE was reached in the wave-enhanced layer. Below the sublayer, the local equilibrium between shear production and dissipation of TKE agreed with the conclusion drawn from the classical law-of-the-wall (Craig and Banner, 1994).
文摘This work deals with the degradation of AZ31 and AZ91 magnesium alloys when they are exposed to three types of physiological media for seven days at 37°C:Ringer's,Hanks\and simulated body fluid(SBF)solutions.A combination of immersions tests and surface characterisation methods were employed to evaluate the attack on the surface,and the stability of the formed corrosion product layers for each alloy/electrolyte system.Measurements of the Mg-ion released into the electrolytes were also carried out in order to be correlated with the degradation of the alloys.Electrochemical impedance spectroscopy(EIS)and potentiodynamic polarisation(PDP)techniques were employed to compare the performance of the alloys in these different aggressive electrolytes.According to the obtained results,the Mg-alloys exposed to Hanks'media were the less affected,which fact was attributed to a higher stability of the corrosion products layer formed in this medium,in comparison of those formed in Ringer's and SBF solutions.In add让ion,the corrosion damage was lower for AZ91 than for AZ31 alloy in all environments due to its higher Al content.The mass loss rates calculated from both immersion tests and electrochemical methods followed the same trend for comparative purposes between alloys.
基金The National Basic Research Program of China(973 Program)under contract No.2011CB403504the China Postdoctoral Science Foundation under contract No.2013M542216the National Natural Science Foundation of China under contract No.41206011
文摘Large eddy simulation (LES) is used to investigate contrasting dynamic characteristics of shear turbulence (ST) and Langmuir circulation (LC) in the surface mixed layer (SML). ST is usually induced by wind forcing in SML. LC can be driven by wave-current interaction that includes the roles of wind, wave and vortex forcing. The LES results show that LC suppresses the horizontal velocity and greatly modifies the downwind velocity profile, but increases the vertical velocity. The strong downweUing jets of LC accelerate and increase the downward transport of energy as compared to ST. The vertical eddy viscosity Km of LC is much larger than that of ST. Strong mixing induced by LC has two locations. They are located in the 26s-36s (Stokes depth scale) and the lower layer of the SML, respectively. Its value and position change periodically with time. In contrast, maximum Km induced by ST is located in the middle depth of the SML. The turbulent kinetic energy (TKE) generated by LC is larger than that by ST. The differences in vertical distributions of TKE and Krn are evident. Therefore, the parameterization of LC cannot be solely based on TKE. For deep SML, the convection of large-scale eddies in LC plays a main role in downward transport of energy and LC can induce stronger velocity shear (S2) near the SML base. In addition, the large-scale eddies and Sz induced by LC is changing all the time, which needs to be fully considered in the parameterization of LC.
基金supported by the National Key Research and Development Program of China (No. 2017YFC1502101)National Natural Science Foundation of China (Nos. 91537212 and 41775018)。
文摘The stratification of the atmospheric surface layer(ASL)plays an important role in regulating the water vapor and heat exchange across the lake–air interface.Based on one year of data measured by the eddy covariance technique over Erhai Lake in 2015,the ASL stability(ζ)was divided into six ranges,including unstable(-1ζ<-0:1),weakly unstable(-0:1ζ<-0:01),near-neutral1(-0:01ζ<0),near-neutral2(0ζ<0:01),weakly stable(0:01ζ<0:1),and stable(0:1ζ<1).The characteristics of ASL stability conditions and factors controlling the latent(LE)and sensible heat(H)fluxes under different stability conditions were analyzed in this study.The stability conditions of Erhai Lake have noticeably seasonal and diurnal variation,with the nearneutral and(weakly)stable stratification usually occurring before July,with frequencies of 51.7%and 23.3%,respectively,but most of the(weakly)unstable stratification was observed after July,with a frequency of 59.8%.Large evaporation occurred even in stable atmospheric conditions,due to the coupled effects of the relatively larger lake–air vapor pressure difference and wind speed.The relative controls of LE and H by different atmospheric variables are largely dependent on the stability conditions.In stable and unstable ranges,LE is closely correlated with the vapor pressure difference,whereas in weakly unstable to weakly stable ranges,it is primarily controlled by wind speed.H is related to wind speed and the lake–air temperature difference under stable conditions,but shows no obvious relationship under unstable conditions.
文摘This work presented the characteristics of two gear teeth finishing methods, due to the properties of gear teeth surface layer obtained at the tooth working depth. These methods are: 1) the teeth carburization, hardening to a hardness of HRC 60-62 and then grinding, 2) the soft gear shaving as the final mechanical treatment and then carburizing and hardening to the hardness of HRC60-62. This work included the test results of the contact fatigue strength carried out on the circulating power system. The Wohler curves were plotted due to the obtained results, as the basis for the practical evaluation of the considered gear finishing methods. The parameters like volume distribution of the voids, content of the retained austenite, compressive residual stress value, but also the results of contact fatigue strength tests, are more favorable for the teeth shaving method than for the teeth grinding method.
基金The National Basic Research Program of China under contract Nos 201 1CB403501 and 2012CB417402the Fund for Creative Research Groups by the National Natural Science Foundation of China under contract No.41121064+1 种基金the National Natural Science Foundation of China under contract Nos 41206015 and 41176016the Open Research Foundation for the State Key Laboratory of Satellite Ocean Environment Dynamics,Second Institute of Oceanography,State Oceanic Administration under contract No.SOED1210
文摘This study uses a large eddy simulation (LES) model to investigate the turbulence processes in the ocean surface boundary layer at Zhangzi Island offshore. Field measurements at Zhangzi Island (39°N, 122°E) during July 2009 are used to drive the LES model. The LES results capture a clear diurnal cycle in the oceanic turbulence boundary layer. The process of the heat penetration and heat distribution characteristics are analyzed through the heat flux results from the LES and their differences between two diurnal cycles are discussed as well. Energy balance and other dynamics are investigated which show that the tide-induced shear production is the main source of the turbulence energy that balanced dissipation. Momentum flux near the surface shows better agreement with atmospheric data computed by the eddy correlation method than those computed by bulk formula.
基金supported by the National Natural Science Foundation of China (Grant Nos. 40965001 and 40875008)the open project of State Key Laboratory of Severe Weather,Chinese Academy of Meteorological Sciences (Grant No.2009LASW-A02)
文摘In southern China, cold air is a common weather process during the winter season; it can cause strong wind, sharp temperature decreases, and even the snow or freezing rain events. However, the features of the atmospheric boundary layer during cold air passage are not clearly understood due to the lack of comprehensive observation data, especially regarding turbulence. In this study, four-layer gradient meteorological observation data and one-layer, 10-Hz ultrasonic anemometer-thermometer monitoring data from the northern side of Poyang Lake were employed to study the main features of the surface boundary layer during a strong cold-air passage over southern China. The results show that, with the passage of a cold air front, the wind speed exhibits low-frequency variations and that the wind systematically descends. During the strong wind period, the wind speed increases with height in the surface layer. Regular gust packets are superimposed on the basic strong wind flow. Before the passage of cold air, the wind gusts exhibit a coherent structure. The wind and turbulent momentum fluxes are small, although the gusty wind momentum flux is slightly larger than the turbulent momentum flux. However, during the invasion of cold air, both the gusty wind and turbulent momentum fluxes increase rapidly with wind speed, and the turbulent momentum flux is larger than the gusty wind momentum flux during the strong wind period. After the cold air invasion, this structure almost disappears.
基金Funded by"Xi-Bu-Zhi-Guang" Foundation of Chinese Academy of Sciences(No.XBZG-2007-5)Gansu Natural Science Foundation of China(No.0806RJYA004)Outstanding Youngth of Lanzhou University of Technology (No.Q200910)
文摘The surface infiltrated composite (Ni/WC) layers on gray iron substrate were fabricated through a vacuum infiltration casting technique (VICT) using Ni-based composite powder with different WC particles content as raw materials.The microstructures of surface infiltrated composite layer,the interface structures between surface composite layer and the substrate,the changes of macro-hardness with the increasing of WC content and the micro-hardness distribution are investigated.The infiltrated composite layer includes a surface composite layer and a transition layer,and the thickness of the transition layer decreases with the increasing content of WC.The thickness of transition layer with 20%WC content in the surface infiltrated composite layer was 170 μm which was the thickest for all transition layers with different WC content.The surface composite layer was mainly composed of WC,W2C,FeB and NiB,along with Ni-Cr-Fe,Ni (Cr) solid solution,Ni (Si) solid solution and Ni (Fe) solid solution.The transition layer was composed of Ni (Cr) solid solution,Ni (Fe) solid solution,Ni (Si) solid solution,Fe (Ni) solid solution and eutectic.The surface macro-hardness and micro-hardness of the infiltrated layer had been evaluated.The macro-hardness of the surface composite layer decreases with the WC content increasing,and the average macro-hardness is HRC60.The distribution of micro-hardness presents gradient change.The average micro-hardness of the infiltrated layer is about HV1000.
基金Supported by National Natural Science Foundation of China (Grant Nos.51105119,51235003)
文摘During hard cutting process there is severe thermodynamic coupling effect between cutting tool and workpiece, which causes quenching effect on finished surfaces under certain conditions. However, material phase transformation mechanism of heat treatment in cutting process is different from the one in traditional process, which leads to changes of the formation mechanism of damaged layer on machined workpiece surface. This paper researches on the generation mechanism of damaged layer on machined surface in the process of PCBN tool hard cutting hardened steel Cr12MoV. Rules of temperature change on machined surface and subsurface are got by means of finite element simulation. In phase transformation temperature experiments rapid transformation instrument is employed, and the effect of quenching under cutting conditions on generation of damaged layer is revealed. Based on that, the phase transformation points of temperature under cutting conditions are determined. By experiment, the effects of cutting speed and tool wear on white layer thickness in damaged layer are revealed. The temperature distribution law of third deformation zone is got by establishing the numerical prediction model, and thickness of white layer in damaged layer is predicted, taking the tool wear effect into consideration. The experimental results show that the model prediction is accurate, and the establishment of prediction model provides a reference for wise selection of parameters in precise hard cutting process. For the machining process with high demanding on surface integrity, the generation of damaged layer on machined surface can be controlled precisely by using the prediction model.
文摘This paper reports a case study of atmospheric stability effect on dimethyl sulfide(DMS) concentration in the air. Investigation includes model simulation and field measurements over the Pacific Ocean. DMS concentration in surface sea water and in the air were measured during a research cruise from Hawaii to Tahiti. The diurnal variation of air temperature over the sea surface differed from the diurnal cycle of sea surface temperature because of the high heat capacity of sea water. The diurnal cycle of average DMS concentration in the air was studied in relation to the atmospheric stability parameter and surface heat flux. All these parameters had minima at noon and maxima in the early morning. The correlation coefficient of the air DMS concentration with wind speed (at 15 m high) was 0. 64. The observed concentrations of DMS in the equatorial marine surface layer and their diurnal variability agree well with model simulations. The simulated results indicate that the amplitude of the cycle and the mean concentration of DMS are dependent on the atmospheric stratifications and wind speed.
基金supported by the National Natural Science Foundation of China (Nos10721202,10432050,10772012 and10732090)the CAS innovation program (KJCX2-YW-M04)
文摘Recently, people are confused with two opposite variations of elastic modulus with decreasing size of nano scale sample: elastic modulus either decreases or increases with decreasing sample size. In this paper, based on intermolecular potentials and a one dimensional model, we provide a unified understanding of the two opposite size effects. Firstly, we analyzed the microstructural variation near the surface of an fcc nanofilm based on the Lennard-Jones potential. It is found that the atomic lattice near the surface becomes looser in comparison with the bulk, indicating that atoms in the bulk are located at the balance of repulsive forces, and the elastic moduli decrease with the decreasing thickness of the film accordingly. In addition, the decrease in moduli should be attributed to both the looser surface layer and smaller coordination number of surface atoms. Furthermore, it is found that both looser and tighter lattice near the surface can appear for a general pair potential and the governing mechanism should be attributed to the surplus of the nearest force to all other long range interactions in the pair potential. Surprisingly, the surplus can be simply expressed by a sum of the long range interactions and the sum being positive or negative determines the looser or tighter lattice near surface respectively. To justify this concept, we examined ZnO in terms of Buckingham potential with long range Coulomb interactions. It is found that compared to its bulk lattice, the ZnO lattice near the surface becomes tighter, indicating the atoms in the bulk are located at the balance of attractive forces, owing to the long range Coulomb interaction. Correspondingly, the elastic modulus of one-dimensional ZnO chain increases with decreasing size. Finally, a kind of many-body potential for Cu was examined. In this case, the surface layer becomes tighter than the bulk and the modulus increases with deceasing size, owing to the long range repulsive pair interaction, as well as the cohesive many-body interaction caused by the electron redistribution.