Based on the working principles of particle bed comminution, particles produced by high-pressure grinding rolls (HPGR) have surface properties different from particles produced by other grinding patterns, which exer...Based on the working principles of particle bed comminution, particles produced by high-pressure grinding rolls (HPGR) have surface properties different from particles produced by other grinding patterns, which exert great influence on mineral flotation. Flotation performances of calcite particles under different grinding patterns involving the use of HPGR, a jaw crusher, a dry ball mill, a wet ball mill, and a wet rod mill were studied using single mineral flotation tests. The surface properties of the particles under different grinding patterns were characterized to determine the flotation performance variation in terms of specific surface area, particle size distribution, AFM, XPS, and zeta potential. The results show that particles ground by HPGR exhibited improved flotation performance within the lower range of grinding fineness in both NaOL and dodecyl amine flotation systems compared to the particles prepared using other grinding patterns. Specific surface area, particle size distribution, surface roughness, Fe(III) contamination, binding energy, and zeta potential are greatly influenced by grinding patterns, which is the main cause of the flotation performance variation.展开更多
The mixing technology of laser and heated nitrogen was applied to improve the surface hardness of titanium alloy ( TC4 ). The samples were nitrided with laser power density of 6.S × 10^6SW. cm^-2, the scanning ...The mixing technology of laser and heated nitrogen was applied to improve the surface hardness of titanium alloy ( TC4 ). The samples were nitrided with laser power density of 6.S × 10^6SW. cm^-2, the scanning speed varioas from 100 to 500mm ·min^-1. The nitrogen gas was pre-heated to 300℃ to accelerate the nitriding process. Some interested samples were tested with XRD method (X-ray diffraction) to analyze the composition of nitrides, and the surface hardness of HV was measured. The results show that TiN and Ti2N were formed on the surface of Ti alloy with proper nitriding parameters, but TiN is the main composition. The surface hardness increased by three times, which is from the original value of 269to 794kg·mm^-2. The mechanism of the mixing technology is considered mainly of the activation of nitrogen by laser power and the pre-heated process which accelerated the nitriding process. The nitridation process can be considered as six steps given in detail. The result by analyzing the mechanism of improving the surface property of TiAl alloy shows the improvement of surface property due to two factors: the first reason is the result of laser annealing, and the second one is the formation of TiN.展开更多
The catalytic performances over propylene epoxidation with H_(2)and O_(2)(HOPO process)are significantly affected by the properties(e.g.,surface properties,Ti coordination,morphology)of titanosilicate zeolite.Introduc...The catalytic performances over propylene epoxidation with H_(2)and O_(2)(HOPO process)are significantly affected by the properties(e.g.,surface properties,Ti coordination,morphology)of titanosilicate zeolite.Introducing urea into zeolite synthesis is a simple and convenient method to modify these properties of titanosilicate zeolite.Uncalcined pore-blocked titanium silicalite-1(TS-1,i.e.,TS-1-B)with the lower urea dosage possesses more defective structure and unsaturated coordinated Ti sites verified by 29Si nuclear magnetic resonance(NMR)and X-ray photoelectron spectroscopy(XPS)analysis,which results in a high initial activity and hydrogen efficiency;while the high surface acidity generated by these Ti species leads to a continuous decrease in the activity and the propylene oxide(PO)selectivity during the reaction.As the amount of urea gradually increases,the TS-1-B samples present the reduced surface defects and defective and unsaturated Ti species.Specially,TS-1-B-0.30U presents the weaker PO adsorption on PO-diffusion reflectance infrared Fourier transform spectra(DRIFTS),thus results in the high stable PO formation rate and selectivity over its Au catalyst.Furthermore,a flat-plate-like shape with a shorter thickness of 100 nm along the b-axis direction is observed on the urea-modified TS-1.Compared with the conventional ellipsoidal TS-1 with crystal sizes of 200 and 500 nm,the flat-plate-like TS-1-0.30U displays the less surface defects,unsaturated Ti species,the weaker Lewis acid,which is favorable for the desorption and intracrystalline diffusion of PO,thus reduces the occurrence of side reactions for the improved selectivity and stability.This work may provide a reference for developing titanium-containing materials with high activity and stability over HOPO reaction.展开更多
Paracetamol (PCM) is enlisted in the WHO model list as an essential medicine for pain and palliative care, but at overdose, it causes hepatic damage. This study was designed to assess the analgesic efficacy and hepato...Paracetamol (PCM) is enlisted in the WHO model list as an essential medicine for pain and palliative care, but at overdose, it causes hepatic damage. This study was designed to assess the analgesic efficacy and hepatoprotective property of a solid dispersion (SD) loaded with PCM. A number of PCM loaded formulations (PSDs) were fabricated using silica alone or in combination with polyethylene glycol and/or Na-citrate followed by in-vitro dissolution profiling. Selected PSDs with improved dissolution profile were subjected to solid-state characterization (DSC, PXRD, FTIR, and SEM), stability study along with investigation of in-vivo analgesic efficacy and effect on hepatocytes. Among these, PSD10 showed a rapid and significantly higher in-vitro drug release than pure PCM. This improvement was distinct to other PSDs also. Solid-state characterization of PSD10 authenticated the conversion of crystalline PCM to amorphous form upon formulation. Subsequent oral administration of PSD10 in Swiss albino mice showed 1.44-fold greater analgesic efficacy than pure PCM at dose 30 mg/kg. Besides, at acute toxic dose, liver histology of PSD10 mice was comparable with NC mice indicating hepatic protection upon formulation, whereas the PCM mice showed extensive hepatic necrosis which was also endorsed by significantly higher values of SGPT, SGOT, and ALP than PSD10 mice. Finally, an accelerated stability study of PSD10 performed according to the guideline of ICH noticed no remarkable deviation in its dissolution performance as well as crystalline nature. Thus, this newly developed PSD10 may be a safe and promising alternative for pain management and palliative care.展开更多
In general,malachite is recovered via sulfidization–xanthate flotation,although many unsatisfactory flotation indexes are frequently obtained as a result of the presence of associated calcite.This phenomenon occurs b...In general,malachite is recovered via sulfidization–xanthate flotation,although many unsatisfactory flotation indexes are frequently obtained as a result of the presence of associated calcite.This phenomenon occurs because the dissolved components of malachite and calcite affect the flotation behavior of both minerals.In this study,the effect of the dissolved components derived from malachite and calcite on the flotation behavior and surface characteristics of both minerals was investigated.Flotation tests indicated that malachite recovery decreased when the calcite supernatant was introduced,while the presence of the malachite supernatant increased the recovery of calcite.Dissolution and adsorption tests,along with zeta potential measurements,X-ray photoelectron spectroscopy,Fourier transform infrared spectrometry,and timeof-flight secondary ion mass spectrometry demonstrated that the Ca species in the calcite supernatant were adsorbed on the malachite surface,which hindered the interaction of Na2S with malachite,thereby resulting in the insufficient adsorption of sodium isoamyl xanthate(NaIX)on the surface of malachite.By contrast,the Cu species in the malachite supernatant were adsorbed on the calcite surface,and they provided active sites for the subsequent adsorption of Na_(2)S and NaIX.展开更多
Despite the promising prospects of nanoparticles in oral drug delivery,the process of oral administration involves a complex transportation pathway that includes cellular uptake,intracellular trafficking,and exocytosi...Despite the promising prospects of nanoparticles in oral drug delivery,the process of oral administration involves a complex transportation pathway that includes cellular uptake,intracellular trafficking,and exocytosis by intestinal epithelial cells,which are necessary steps for nanoparticles to enter the bloodstream and exert therapeutic effects.Current researchers have identified several crucial factors that regulate the interaction between nanoparticles and intestinal epithelial cells,including surface properties such as ligand modification,surface charge,hydrophilicity/hydrophobicity,intestinal protein corona formation,as well as holistic properties like particle size,shape,and rigidity.Understanding these properties is essential for enhancing transepithelial transport efficiency and designing effective oral drug delivery systems.Therefore,this review provides a comprehensive overview of the surface and holistic properties that influence the transepithelial transport of nanoparticles,elucidating the underlying principles governing their impact on transepithelial transport.The review also outlines the chosen of parameters to be considered for the subsequent design of oral drug delivery systems.展开更多
The surface of grinding 10Ni3MnCuAl steel is processed by the shot peening with different intensities. After shot peening, the metallographic structure of 10Ni3MnCuAl steel and the micro-structure on the surface layer...The surface of grinding 10Ni3MnCuAl steel is processed by the shot peening with different intensities. After shot peening, the metallographic structure of 10Ni3MnCuAl steel and the micro-structure on the surface layer are analyzed. The micro-hardness in the shot peening affected layer and the residual pressure stress are surveyed. The changes of surface quality, such as micro-hardness, metallographic structure and residual stress caused by shot peening are investigated. The result shows that shot peening can significantly improve surface quality and fatigue life of 10Ni3MnCuAl steel. The over peening effect is produced when the shot peening intensity is high, and it leads to the decrease of the fatigue life. When the optimal arc high value of shot peening is 0. 40 mm in experiments, the best surface quality is obtained and the depth of the residual stress in the precipitation-hardening layer reaches 450μm.展开更多
The alteration of surface properties of chalcopyrite after biological conditioning with Leptospirillum ferriphilum was studied by adsorption,zeta-potential,contact angle and bioleaching tests.The strains of L.ferriphi...The alteration of surface properties of chalcopyrite after biological conditioning with Leptospirillum ferriphilum was studied by adsorption,zeta-potential,contact angle and bioleaching tests.The strains of L.ferriphilum cultured using different energy sources(either soluble ferrous ion or chalcopyrite) were used.The adhesion of bacteria to the chalcopyrite surface was a fast process.Additionally,the adsorption of substrate-grown bacteria was greater and faster than that of liquid-grown ones.The isoelectric point(IEP) of chalcopyrite moved toward that of pure L.ferriphilum after conditioning with bacteria.The chalcopyrite contact angle curves motioned diversely in the culture with or without energy source.The results of X-ray diffraction patterns(XRD),scanning electron microscopy(SEM) and energy-dispersive X-ray spectroscopy(EDS) analysis indicate that the surface of chalcopyrite is covered with sulfur and jarosite during the bioleaching process by L.ferriphilum.Furthermore,EDS results imply that iron phase dissolves preferentially from chalcopyrite surface during bioleaching.The copper extraction is low,resulting from the formation of a passivation layer on the surface of chalcopyrite.The major component of the passivation layer that blocked continuous copper extraction is sulfur instead of jarosite.展开更多
Commercial coke was modified by H2O2 and/or NH3.H2O to obtain an activated coke containing additional oxygen functional groups and/or nitrogen functional groups. The aim of the modification was to enhance the SO2 adso...Commercial coke was modified by H2O2 and/or NH3.H2O to obtain an activated coke containing additional oxygen functional groups and/or nitrogen functional groups. The aim of the modification was to enhance the SO2 adsorption capacity of the activated coke. Several techniques, including total nitrogen content measurements, SO2 adsorption, XPS and FTIR analysis, were used to characterize the coke samples. The XPS and FTIR spectra suggest the existence of -CONH2 groups in the H2O2 plus ammonia modified coke. The SO2 adsorption capacity of an activated coke increases slightly with an increase in H2O2 concentration during the modification process. The desulphurization performance of a modified coke is considerably enhanced by increasing the treatment temperature during ammonia modification. The amount of nitrogen in a coke modified by H2O2 plus NH3.H2O is the highest, and the SO2 adsorption capacity of the coke is also the highest (89.9 mg/gC). The NH3.H2O (only) modified sample has lower nitrogen content and lower desulphurization capacity (79.9 mg/gC). H2O modification gives the lowest SO2 adsorption capacity (28.9 mg/gC). The H2O2 pre-treatment is beneficial for the introduction of nitrogen onto the surface of a sample during the following ammonia treatment process.展开更多
Iron oxide supported Au nanomaterials are one of the most studied catalysts for low-temperature CO oxidation.Catalytic performance not only critically depends on the size of the supported Au nanoparticles(NPs)but also...Iron oxide supported Au nanomaterials are one of the most studied catalysts for low-temperature CO oxidation.Catalytic performance not only critically depends on the size of the supported Au nanoparticles(NPs)but also strongly on the chemical nature of the iron oxide.In this study,Au NPs supported on iron oxide nanorods with different surface properties throughβ-FeOOH annealing,at varying temperatures,were synthesized,and applied in the CO oxidation.Detailed characterizations of the interactions between Au NPs and iron oxides were obtained by X-ray diffraction,transmission electron microscopy(TEM),and X-ray photoelectron spectroscopy.The results indicate that the surface hydroxyl group on the Au/FeOOH catalyst,before calcination(Au/FeOOH-fresh),could facilitate the oxygen adsorption and dissociation on positively charged Au,thereby contributing to the low-temperature CO oxidation reactivity.After calcination at 200℃,under air exposure,the chemical state of the supported Au NP on varied iron oxides partly changed from metal cation to Au0,along with the disappearance of the surface OH species.Au/FeOOH with the highest Au0 content exhibits the highest activity in CO oxidation,among the as-synthesized catalysts.Furthermore,good durability in CO oxidation was achieved over the Au/FeOOH catalyst for 12 h without observable deactivation.In addition,the advanced identical-location TEM method was applied to the gas phase reaction to probe the structure evolution of the Au/iron oxide series of the catalysts and support structure.A Au NP size-dependent Ostwald ripening process mediated by the transport of Au(CO)x mobile species under certain reaction conditions is proposed,which offers a new insight into the validity of the structure-performance relationship.展开更多
AIM: To prepare a new-type soft intraocular lens (IOL) that silicone intraocular lenses (IOLs) were modified by surface modification technique to assess IOLs biocompatibility. METHODS: With the technique of ion beam c...AIM: To prepare a new-type soft intraocular lens (IOL) that silicone intraocular lenses (IOLs) were modified by surface modification technique to assess IOLs biocompatibility. METHODS: With the technique of ion beam combined with low temperature and low pressure plasma, the surface characteristics of the IOLs including physical and optical properties were determined by the instruments of IOLs resolution, UV/VIS scanning spectrophotometer, contact angle measurement system, electron spectroscopy for chemical analysis (ESCA) and scanning electron microscope (SEM). RESULTS: The color of titanium (Ti) modified IOLs was light yellow and that of titanium nitride (TiN) modified IOLs was light brown. The absorptive degree of ultraviolet rays and the hydrophilicity of the surfaces of modified IOLs were increased, and appeared suitable chemical compositions. The resolution of unmodified and modified IOLs reached normal standard. The surfaces of unmodified and Ti-modified IOLs appeared uniform. The surfaces of TIN-modified IOLs presented fine porcelain structure. CONCLUSION: The optical properties of all IOLs and the surface morphology of the modified IOLs were not affected by modification processes. The surface properties of the modified IOLs were improved.展开更多
Plasma treatment has been known as an effective way to improve the surface bonding between the reinforcement material and the matrix, by modifying the surface morphology and the chemical composes of the material. In o...Plasma treatment has been known as an effective way to improve the surface bonding between the reinforcement material and the matrix, by modifying the surface morphology and the chemical composes of the material. In order to investigate the effects of atmospheric dielectric barrier discharge (DBD) plasma treatment on the surface properties of polyacrylonitrile-based (PAN-based) carbon fiber, atomic force microscope(AFM), X-ray photoelectron spectroscopy(XPS), and contact angle test were introduced to compare different treatment duration. The interfacial adhesion of carbon fiber/epoxy (CF/EP) composites were analyzed by a single fiber composite (SFC) for filament fragmentation test. And the tensile strength test and Weibull analysis were carried out to observe whether the etching could affect the strength. The results prove that the DBD plasma improves the surface properties of the carbon fiber. Further, when the treatment time was around 90 s, the roughness and oxygen containing group of the carbon fiber reached the peak values. Also, the fiber showed the best adhesion to the polymer in contact angle test and the optimum interfacial shear strength (IFSS) in fragmentation test. The Weibull analyses of the tensile data revealed no substantial changes in the tensile strength within the treatment time of 180 s.展开更多
A series of copolymers comprising butylmethacrylate, styrene, butylacrylate, hydroxypropyl acrylate and perfluoroalkyl methacrylate were synthesized by the free radical polymerization using BPO as an initiator. The su...A series of copolymers comprising butylmethacrylate, styrene, butylacrylate, hydroxypropyl acrylate and perfluoroalkyl methacrylate were synthesized by the free radical polymerization using BPO as an initiator. The surface property of the copolymer films was subsequently characterized. The contact angle measurements and energy dispersive analysis of X-ray (EDAX) show that the length and content of perfluoroalkyl side chains in the copolymers are crucial for the preparation of the film with low surface energy. At a given content of fluorinated monomers in the copolymers, the longer the perfluoroalkyl side chain, the larger the water contact angle of the copolymer films will be. On the other hand, the higher the content of fluorinated monomers, the lower the surface energy is. The water contact angle increases with the increase of the fluorinated monomer content and reaches a plateau at 3 wt% of fluorinated monomer content.展开更多
Photoelectrochemical (PEC) small-molecule oxidation can selectively transform substrates into high-value-added fine chemicals and increase the rate of cathode hydrogen evolution. Nevertheless, achieving high-selectivi...Photoelectrochemical (PEC) small-molecule oxidation can selectively transform substrates into high-value-added fine chemicals and increase the rate of cathode hydrogen evolution. Nevertheless, achieving high-selectivity PEC oxidation of small molecules to produce specific products is a very challenging task. In general, selectivity can be improved by changing the surface catalyticsites of the photoanode and modulating the interfacial environments of the reactions. Herein, recent advances in approaches to improving selective PEC oxidation of small molecules are introduced. We first briefly discuss the basic concept and fundamentals of small-molecule PEC oxidation. The reported approaches to improving the performance of selective PEC oxidation of small molecules are highlighted from two aspects: (1) changing the surface properties of photoanodes by selecting suitable materials or modifying the photoanodes and (2) mediating the oxidation reactions using redox mediators. The PEC oxidation mechanism of these studies is emphasized. We also discuss the challenges in this research direction and offer a perspective on the further development of selective PEC-based small-molecule transformation.展开更多
Zinc-ion capacitors(ZICs),which consist of a capacitor-type electrode and a battery-type electrode,not only possess the high power density of supercapacitors and the high energy density of batteries,but also have othe...Zinc-ion capacitors(ZICs),which consist of a capacitor-type electrode and a battery-type electrode,not only possess the high power density of supercapacitors and the high energy density of batteries,but also have other advantages such as abundant resources,high safety and environmental friendliness.However,they still face problems such as insufficient specific capacitance,a short cycling life,and narrow operating voltage and temperature ranges,which are hindering their practical use.We provide a comprehensive overview of the fundamental theory of carbon-based ZICs and summarize recent research progress from three perspectives:the carbon cathode,electrolyte and zinc anode.The influence of the structure and surface chemical properties of the carbon materials on the capacitive performance of ZICs is considered together with theoretical guidance for advancing their development and practical use.展开更多
Nanostructured gallium‐doped zinc oxide (GZO) thin films were fabricated on piezoelectric sub‐strates. The GZO thin films with nanodisk/nanoflower morphologies were prepared by a simple spin‐coating process follo...Nanostructured gallium‐doped zinc oxide (GZO) thin films were fabricated on piezoelectric sub‐strates. The GZO thin films with nanodisk/nanoflower morphologies were prepared by a simple spin‐coating process followed by one‐step hydrothermal treatment. Addition of polymer during hydrothermal treatment resulted in nanodisk and nanoflower morphologies. The morphology, microstructure and chemical composition of thin films prepared under different conditions were examined by field‐emission scanning electron microscopy (FE‐SEM), X‐ray diffraction (XRD) and Raman spectroscopy. The XRD and FE‐SEM investigations confirmed that the GZO nanodisks, na‐norods and nanoflowers formed on the AlN/Si substrates were all wurtzite phase. Green fluorescent protein (GFP) was immobilized on the as‐synthesized GZO nanostructured materials by a dipping process. Atomic force microscopy (AFM) and fluorescence spectroscopy measurements were con‐ducted to confirm the surface binding nature of GFP on the GZO nanostructures to determine their suitability for use in sensor applications and bioimaging techniques. Trace‐level addition of GFP to the GZO nanostructures resulted in a fluorescence response, revealing good activity for ultraviolet light sensor applications.展开更多
To improve the hydrophilicity of polyacrylonitrile-based membranes, sugar moieties were incorporated into acrylonitrile-based copolymers via the radical copolymerization of α-allyl glucoside(AG) with acrylonitrile(AN...To improve the hydrophilicity of polyacrylonitrile-based membranes, sugar moieties were incorporated into acrylonitrile-based copolymers via the radical copolymerization of α-allyl glucoside(AG) with acrylonitrile(AN) with 2,2′-azobis-iso-butyronitrile(AIBN) as the initiator in dimethyl sulphoxide(DMSO). It was found that the yield increased with the increase of the initiator concentration and reaction time, while it decreased with the increase of the monomer molar ratio of AG to AN. Raising the AG proportion in the monomer mixture resulted in the increase of the AG content in the copolymer. M_v of the copolymers decreased with increasing the AG monomer fraction in feed. The copolymers were fabricated into dense membranes and their surface properties were studied by means of the water contact angle measurement and platelet adhesion tests. It was found that the static water contact angle on the membrane decreased significantly from 70° to 33° with the increase of the AG content. The adhesive number of platelets on the membrane surface also decreased significantly with increasing AG content in the copolymers. These results demonstrate that the hydrophilicity and biocompatibility of the acrylonitrile-based copolymer membranes could be improved efficiently by the copolymerization of acrylonitrile with vinyl carbohydrates.展开更多
The oxidation of CO on platinum electrodes in an acid solution was studied with the conventional electrochemical methods and the on-line electrochemical mass spectroscopy. It was found that this reaction is strongly ...The oxidation of CO on platinum electrodes in an acid solution was studied with the conventional electrochemical methods and the on-line electrochemical mass spectroscopy. It was found that this reaction is strongly determined by the surface morphology of platinum. The pretreatment of platinum electrodes can change the surface properties dramatically, in consequence it can improve the electrocatalytic activity towards the electrooxidation of CO. The existence of surface active sites on the roughened platinum electrodes can be used to explain its high electrocatalysis towards the oxidation of CO.展开更多
Diamond-like carbon (DLC) films were successfully deposited on Ti- 50.8 at% Ni using plasma based ion implantation (PBII) technique. The influence of the pulsed negative bias voltage applied to the substrate from...Diamond-like carbon (DLC) films were successfully deposited on Ti- 50.8 at% Ni using plasma based ion implantation (PBII) technique. The influence of the pulsed negative bias voltage applied to the substrate from 12 kV to 40 kV on the microstracture, nano-indentation hardness and Young' s modulus, the surface characteristics and corrosion resistant property as well as hemocompatibility were investigated. The experimental resalts showed that C 1 s peak depended heavily on the bias voltage. With the increase of bias voltage, the ratio of sp2 / sp3 first decreased, reaching a minimum value at 20 kV, and then increased. The DLC coating deposited at 20 kV showed the highest hardness and elastic modulus values as a result of lower sp2/sp3 ratio. The RMS values first decreased from 7.202nm(12 kV) to 5.279 nm(20 kV), and then increased to 11.449 nm(30 kV) and 7.060 nm( 40 kV). The uncoated TiNi alloy showed severe pitting corrosion, due to the presence of Cl-ions in the solution. On the contrary, the DLC coated sample showed very little pitting corrosion and behaved better corrosion resistant property especially for the specimens deposited at 20 kV bias voltages. The platelet adhesion test show that the hemocompatibility of DLC coated TiNi alloy is much better than that of bare TiNi alloy, and the hemocompatibility performance of DLC coated TiNi alloy deposited at 20 kV is superior to that of other coated specimens.展开更多
Biopolymer fibers have great potential for technical applications in biomaterials.The surface properties of fibers are of importance in these applications.In this study,electrospun poly(L-lactide)(PLLA)/poly(ε-caprol...Biopolymer fibers have great potential for technical applications in biomaterials.The surface properties of fibers are of importance in these applications.In this study,electrospun poly(L-lactide)(PLLA)/poly(ε-caprolactone)(PCL)membranes were modified by cold plasma treatment and coating gelatin to improve the surface hydrophilic properties.The morphologies of the fibers were observed by scanning electron microscopy(SEM).Atomic force microscopy(AFM)was employed to show the surface characteristics of the fibers.The chemical feature of the fibrous membrane surfaces was examined by X-ray photoelectron spectroscopy(XPS).The surface wettability of the fibrous membrane was also characterized by water contact angle measurements.All these results show that plasma treatment can have profound effects on the surface properties of fibrous membranes by changing their surface physical and chemical features.Gelatin-PLLA/PCL membrane has great potential in applications of tissue engineering scaffolds.展开更多
基金Project(2013EG132088)supported by Special Program for Research Institutes of the Ministry of Science and Technology,ChinaProject(12010402c187)supported by Key Science and Technology Program of Anhui Province,ChinaProject(GJKJ-14-89)supported by Science and Technology Program of Nanchang Institute of Science and Technology,China
文摘Based on the working principles of particle bed comminution, particles produced by high-pressure grinding rolls (HPGR) have surface properties different from particles produced by other grinding patterns, which exert great influence on mineral flotation. Flotation performances of calcite particles under different grinding patterns involving the use of HPGR, a jaw crusher, a dry ball mill, a wet ball mill, and a wet rod mill were studied using single mineral flotation tests. The surface properties of the particles under different grinding patterns were characterized to determine the flotation performance variation in terms of specific surface area, particle size distribution, AFM, XPS, and zeta potential. The results show that particles ground by HPGR exhibited improved flotation performance within the lower range of grinding fineness in both NaOL and dodecyl amine flotation systems compared to the particles prepared using other grinding patterns. Specific surface area, particle size distribution, surface roughness, Fe(III) contamination, binding energy, and zeta potential are greatly influenced by grinding patterns, which is the main cause of the flotation performance variation.
文摘The mixing technology of laser and heated nitrogen was applied to improve the surface hardness of titanium alloy ( TC4 ). The samples were nitrided with laser power density of 6.S × 10^6SW. cm^-2, the scanning speed varioas from 100 to 500mm ·min^-1. The nitrogen gas was pre-heated to 300℃ to accelerate the nitriding process. Some interested samples were tested with XRD method (X-ray diffraction) to analyze the composition of nitrides, and the surface hardness of HV was measured. The results show that TiN and Ti2N were formed on the surface of Ti alloy with proper nitriding parameters, but TiN is the main composition. The surface hardness increased by three times, which is from the original value of 269to 794kg·mm^-2. The mechanism of the mixing technology is considered mainly of the activation of nitrogen by laser power and the pre-heated process which accelerated the nitriding process. The nitridation process can be considered as six steps given in detail. The result by analyzing the mechanism of improving the surface property of TiAl alloy shows the improvement of surface property due to two factors: the first reason is the result of laser annealing, and the second one is the formation of TiN.
基金the funds from the Research Fund for National Key Research and Development Program of China(No.2021YFA1501403)the National Natural Science Foundation of China(Nos.21922803 and 22038003)+1 种基金Shanghai Rising-Star Program(No.17QA1401200)the Innovation Program of the Shanghai Municipal Education Commission(No.17ZR1407300).
文摘The catalytic performances over propylene epoxidation with H_(2)and O_(2)(HOPO process)are significantly affected by the properties(e.g.,surface properties,Ti coordination,morphology)of titanosilicate zeolite.Introducing urea into zeolite synthesis is a simple and convenient method to modify these properties of titanosilicate zeolite.Uncalcined pore-blocked titanium silicalite-1(TS-1,i.e.,TS-1-B)with the lower urea dosage possesses more defective structure and unsaturated coordinated Ti sites verified by 29Si nuclear magnetic resonance(NMR)and X-ray photoelectron spectroscopy(XPS)analysis,which results in a high initial activity and hydrogen efficiency;while the high surface acidity generated by these Ti species leads to a continuous decrease in the activity and the propylene oxide(PO)selectivity during the reaction.As the amount of urea gradually increases,the TS-1-B samples present the reduced surface defects and defective and unsaturated Ti species.Specially,TS-1-B-0.30U presents the weaker PO adsorption on PO-diffusion reflectance infrared Fourier transform spectra(DRIFTS),thus results in the high stable PO formation rate and selectivity over its Au catalyst.Furthermore,a flat-plate-like shape with a shorter thickness of 100 nm along the b-axis direction is observed on the urea-modified TS-1.Compared with the conventional ellipsoidal TS-1 with crystal sizes of 200 and 500 nm,the flat-plate-like TS-1-0.30U displays the less surface defects,unsaturated Ti species,the weaker Lewis acid,which is favorable for the desorption and intracrystalline diffusion of PO,thus reduces the occurrence of side reactions for the improved selectivity and stability.This work may provide a reference for developing titanium-containing materials with high activity and stability over HOPO reaction.
文摘Paracetamol (PCM) is enlisted in the WHO model list as an essential medicine for pain and palliative care, but at overdose, it causes hepatic damage. This study was designed to assess the analgesic efficacy and hepatoprotective property of a solid dispersion (SD) loaded with PCM. A number of PCM loaded formulations (PSDs) were fabricated using silica alone or in combination with polyethylene glycol and/or Na-citrate followed by in-vitro dissolution profiling. Selected PSDs with improved dissolution profile were subjected to solid-state characterization (DSC, PXRD, FTIR, and SEM), stability study along with investigation of in-vivo analgesic efficacy and effect on hepatocytes. Among these, PSD10 showed a rapid and significantly higher in-vitro drug release than pure PCM. This improvement was distinct to other PSDs also. Solid-state characterization of PSD10 authenticated the conversion of crystalline PCM to amorphous form upon formulation. Subsequent oral administration of PSD10 in Swiss albino mice showed 1.44-fold greater analgesic efficacy than pure PCM at dose 30 mg/kg. Besides, at acute toxic dose, liver histology of PSD10 mice was comparable with NC mice indicating hepatic protection upon formulation, whereas the PCM mice showed extensive hepatic necrosis which was also endorsed by significantly higher values of SGPT, SGOT, and ALP than PSD10 mice. Finally, an accelerated stability study of PSD10 performed according to the guideline of ICH noticed no remarkable deviation in its dissolution performance as well as crystalline nature. Thus, this newly developed PSD10 may be a safe and promising alternative for pain management and palliative care.
基金financially supported by Yunnan Fundamental Research Projects (No.202101BE070001-009)National Natural Science Foundation of China (No.51464029)。
文摘In general,malachite is recovered via sulfidization–xanthate flotation,although many unsatisfactory flotation indexes are frequently obtained as a result of the presence of associated calcite.This phenomenon occurs because the dissolved components of malachite and calcite affect the flotation behavior of both minerals.In this study,the effect of the dissolved components derived from malachite and calcite on the flotation behavior and surface characteristics of both minerals was investigated.Flotation tests indicated that malachite recovery decreased when the calcite supernatant was introduced,while the presence of the malachite supernatant increased the recovery of calcite.Dissolution and adsorption tests,along with zeta potential measurements,X-ray photoelectron spectroscopy,Fourier transform infrared spectrometry,and timeof-flight secondary ion mass spectrometry demonstrated that the Ca species in the calcite supernatant were adsorbed on the malachite surface,which hindered the interaction of Na2S with malachite,thereby resulting in the insufficient adsorption of sodium isoamyl xanthate(NaIX)on the surface of malachite.By contrast,the Cu species in the malachite supernatant were adsorbed on the calcite surface,and they provided active sites for the subsequent adsorption of Na_(2)S and NaIX.
基金the National Natural Science Foundation of China(82104069)the Regional Innovation and Development Joint Fund of the National Natural Science Foundation of China(U22A20356)+3 种基金the JapaneChina Sasakawa Medical Fellowship,Sichuan Science and Technology Department Project(2022089)Sichuan Medical Association Youth Innovation Research Project(Q20019)the Third People’s Hospital of Chengdu Scientific Research Project(2023PI16)Clinical Research Program(CSY-YN-01-2023-015).
文摘Despite the promising prospects of nanoparticles in oral drug delivery,the process of oral administration involves a complex transportation pathway that includes cellular uptake,intracellular trafficking,and exocytosis by intestinal epithelial cells,which are necessary steps for nanoparticles to enter the bloodstream and exert therapeutic effects.Current researchers have identified several crucial factors that regulate the interaction between nanoparticles and intestinal epithelial cells,including surface properties such as ligand modification,surface charge,hydrophilicity/hydrophobicity,intestinal protein corona formation,as well as holistic properties like particle size,shape,and rigidity.Understanding these properties is essential for enhancing transepithelial transport efficiency and designing effective oral drug delivery systems.Therefore,this review provides a comprehensive overview of the surface and holistic properties that influence the transepithelial transport of nanoparticles,elucidating the underlying principles governing their impact on transepithelial transport.The review also outlines the chosen of parameters to be considered for the subsequent design of oral drug delivery systems.
基金Supported by the National Natural Science Foundation of China(50675104)~~
文摘The surface of grinding 10Ni3MnCuAl steel is processed by the shot peening with different intensities. After shot peening, the metallographic structure of 10Ni3MnCuAl steel and the micro-structure on the surface layer are analyzed. The micro-hardness in the shot peening affected layer and the residual pressure stress are surveyed. The changes of surface quality, such as micro-hardness, metallographic structure and residual stress caused by shot peening are investigated. The result shows that shot peening can significantly improve surface quality and fatigue life of 10Ni3MnCuAl steel. The over peening effect is produced when the shot peening intensity is high, and it leads to the decrease of the fatigue life. When the optimal arc high value of shot peening is 0. 40 mm in experiments, the best surface quality is obtained and the depth of the residual stress in the precipitation-hardening layer reaches 450μm.
基金Project (2010CB630903) supported by the National Basic Research Program of China
文摘The alteration of surface properties of chalcopyrite after biological conditioning with Leptospirillum ferriphilum was studied by adsorption,zeta-potential,contact angle and bioleaching tests.The strains of L.ferriphilum cultured using different energy sources(either soluble ferrous ion or chalcopyrite) were used.The adhesion of bacteria to the chalcopyrite surface was a fast process.Additionally,the adsorption of substrate-grown bacteria was greater and faster than that of liquid-grown ones.The isoelectric point(IEP) of chalcopyrite moved toward that of pure L.ferriphilum after conditioning with bacteria.The chalcopyrite contact angle curves motioned diversely in the culture with or without energy source.The results of X-ray diffraction patterns(XRD),scanning electron microscopy(SEM) and energy-dispersive X-ray spectroscopy(EDS) analysis indicate that the surface of chalcopyrite is covered with sulfur and jarosite during the bioleaching process by L.ferriphilum.Furthermore,EDS results imply that iron phase dissolves preferentially from chalcopyrite surface during bioleaching.The copper extraction is low,resulting from the formation of a passivation layer on the surface of chalcopyrite.The major component of the passivation layer that blocked continuous copper extraction is sulfur instead of jarosite.
基金Project 50204011 supported by the National Natural Science Foundation of Chinaa part work of the Inno- vation Program for Undergraduate supported by China University of Mining & Technology,Beijing
文摘Commercial coke was modified by H2O2 and/or NH3.H2O to obtain an activated coke containing additional oxygen functional groups and/or nitrogen functional groups. The aim of the modification was to enhance the SO2 adsorption capacity of the activated coke. Several techniques, including total nitrogen content measurements, SO2 adsorption, XPS and FTIR analysis, were used to characterize the coke samples. The XPS and FTIR spectra suggest the existence of -CONH2 groups in the H2O2 plus ammonia modified coke. The SO2 adsorption capacity of an activated coke increases slightly with an increase in H2O2 concentration during the modification process. The desulphurization performance of a modified coke is considerably enhanced by increasing the treatment temperature during ammonia modification. The amount of nitrogen in a coke modified by H2O2 plus NH3.H2O is the highest, and the SO2 adsorption capacity of the coke is also the highest (89.9 mg/gC). The NH3.H2O (only) modified sample has lower nitrogen content and lower desulphurization capacity (79.9 mg/gC). H2O modification gives the lowest SO2 adsorption capacity (28.9 mg/gC). The H2O2 pre-treatment is beneficial for the introduction of nitrogen onto the surface of a sample during the following ammonia treatment process.
基金supported by the National Natural Science Foundation of China(21773269,21761132025,91545119,21703262)the Youth Innovation Promotion Association CAS(2015152)+1 种基金the Joint Foundation of Liaoning Province Natural Science FoundationShenyang National Laboratory for Materials Science(20180510047)~~
文摘Iron oxide supported Au nanomaterials are one of the most studied catalysts for low-temperature CO oxidation.Catalytic performance not only critically depends on the size of the supported Au nanoparticles(NPs)but also strongly on the chemical nature of the iron oxide.In this study,Au NPs supported on iron oxide nanorods with different surface properties throughβ-FeOOH annealing,at varying temperatures,were synthesized,and applied in the CO oxidation.Detailed characterizations of the interactions between Au NPs and iron oxides were obtained by X-ray diffraction,transmission electron microscopy(TEM),and X-ray photoelectron spectroscopy.The results indicate that the surface hydroxyl group on the Au/FeOOH catalyst,before calcination(Au/FeOOH-fresh),could facilitate the oxygen adsorption and dissociation on positively charged Au,thereby contributing to the low-temperature CO oxidation reactivity.After calcination at 200℃,under air exposure,the chemical state of the supported Au NP on varied iron oxides partly changed from metal cation to Au0,along with the disappearance of the surface OH species.Au/FeOOH with the highest Au0 content exhibits the highest activity in CO oxidation,among the as-synthesized catalysts.Furthermore,good durability in CO oxidation was achieved over the Au/FeOOH catalyst for 12 h without observable deactivation.In addition,the advanced identical-location TEM method was applied to the gas phase reaction to probe the structure evolution of the Au/iron oxide series of the catalysts and support structure.A Au NP size-dependent Ostwald ripening process mediated by the transport of Au(CO)x mobile species under certain reaction conditions is proposed,which offers a new insight into the validity of the structure-performance relationship.
基金A Foundation for the Author of National Excellent Doctoral Dissertation of PR China(No.10021201)
文摘AIM: To prepare a new-type soft intraocular lens (IOL) that silicone intraocular lenses (IOLs) were modified by surface modification technique to assess IOLs biocompatibility. METHODS: With the technique of ion beam combined with low temperature and low pressure plasma, the surface characteristics of the IOLs including physical and optical properties were determined by the instruments of IOLs resolution, UV/VIS scanning spectrophotometer, contact angle measurement system, electron spectroscopy for chemical analysis (ESCA) and scanning electron microscope (SEM). RESULTS: The color of titanium (Ti) modified IOLs was light yellow and that of titanium nitride (TiN) modified IOLs was light brown. The absorptive degree of ultraviolet rays and the hydrophilicity of the surfaces of modified IOLs were increased, and appeared suitable chemical compositions. The resolution of unmodified and modified IOLs reached normal standard. The surfaces of unmodified and Ti-modified IOLs appeared uniform. The surfaces of TIN-modified IOLs presented fine porcelain structure. CONCLUSION: The optical properties of all IOLs and the surface morphology of the modified IOLs were not affected by modification processes. The surface properties of the modified IOLs were improved.
基金the Key Laboratory Fundings of Science and Technology Commission of Shanghai Municipality,China(No. 10521100404,No.10JC1400400)Foundation of Key Laboratory of Textile Science & Technology,Ministry of Education of China(No. 11D10114)
文摘Plasma treatment has been known as an effective way to improve the surface bonding between the reinforcement material and the matrix, by modifying the surface morphology and the chemical composes of the material. In order to investigate the effects of atmospheric dielectric barrier discharge (DBD) plasma treatment on the surface properties of polyacrylonitrile-based (PAN-based) carbon fiber, atomic force microscope(AFM), X-ray photoelectron spectroscopy(XPS), and contact angle test were introduced to compare different treatment duration. The interfacial adhesion of carbon fiber/epoxy (CF/EP) composites were analyzed by a single fiber composite (SFC) for filament fragmentation test. And the tensile strength test and Weibull analysis were carried out to observe whether the etching could affect the strength. The results prove that the DBD plasma improves the surface properties of the carbon fiber. Further, when the treatment time was around 90 s, the roughness and oxygen containing group of the carbon fiber reached the peak values. Also, the fiber showed the best adhesion to the polymer in contact angle test and the optimum interfacial shear strength (IFSS) in fragmentation test. The Weibull analyses of the tensile data revealed no substantial changes in the tensile strength within the treatment time of 180 s.
基金This work was partly supported by the National Natural Science Foundation of China (No. 50273008)Qingdao Municipal Science and Technology Commission.
文摘A series of copolymers comprising butylmethacrylate, styrene, butylacrylate, hydroxypropyl acrylate and perfluoroalkyl methacrylate were synthesized by the free radical polymerization using BPO as an initiator. The surface property of the copolymer films was subsequently characterized. The contact angle measurements and energy dispersive analysis of X-ray (EDAX) show that the length and content of perfluoroalkyl side chains in the copolymers are crucial for the preparation of the film with low surface energy. At a given content of fluorinated monomers in the copolymers, the longer the perfluoroalkyl side chain, the larger the water contact angle of the copolymer films will be. On the other hand, the higher the content of fluorinated monomers, the lower the surface energy is. The water contact angle increases with the increase of the fluorinated monomer content and reaches a plateau at 3 wt% of fluorinated monomer content.
基金the National Natural Science Foundation of China (No. 22136005)the Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDB36000000).
文摘Photoelectrochemical (PEC) small-molecule oxidation can selectively transform substrates into high-value-added fine chemicals and increase the rate of cathode hydrogen evolution. Nevertheless, achieving high-selectivity PEC oxidation of small molecules to produce specific products is a very challenging task. In general, selectivity can be improved by changing the surface catalyticsites of the photoanode and modulating the interfacial environments of the reactions. Herein, recent advances in approaches to improving selective PEC oxidation of small molecules are introduced. We first briefly discuss the basic concept and fundamentals of small-molecule PEC oxidation. The reported approaches to improving the performance of selective PEC oxidation of small molecules are highlighted from two aspects: (1) changing the surface properties of photoanodes by selecting suitable materials or modifying the photoanodes and (2) mediating the oxidation reactions using redox mediators. The PEC oxidation mechanism of these studies is emphasized. We also discuss the challenges in this research direction and offer a perspective on the further development of selective PEC-based small-molecule transformation.
文摘Zinc-ion capacitors(ZICs),which consist of a capacitor-type electrode and a battery-type electrode,not only possess the high power density of supercapacitors and the high energy density of batteries,but also have other advantages such as abundant resources,high safety and environmental friendliness.However,they still face problems such as insufficient specific capacitance,a short cycling life,and narrow operating voltage and temperature ranges,which are hindering their practical use.We provide a comprehensive overview of the fundamental theory of carbon-based ZICs and summarize recent research progress from three perspectives:the carbon cathode,electrolyte and zinc anode.The influence of the structure and surface chemical properties of the carbon materials on the capacitive performance of ZICs is considered together with theoretical guidance for advancing their development and practical use.
基金supported by King Saud University, Vice Deanship of Research Chairs
文摘Nanostructured gallium‐doped zinc oxide (GZO) thin films were fabricated on piezoelectric sub‐strates. The GZO thin films with nanodisk/nanoflower morphologies were prepared by a simple spin‐coating process followed by one‐step hydrothermal treatment. Addition of polymer during hydrothermal treatment resulted in nanodisk and nanoflower morphologies. The morphology, microstructure and chemical composition of thin films prepared under different conditions were examined by field‐emission scanning electron microscopy (FE‐SEM), X‐ray diffraction (XRD) and Raman spectroscopy. The XRD and FE‐SEM investigations confirmed that the GZO nanodisks, na‐norods and nanoflowers formed on the AlN/Si substrates were all wurtzite phase. Green fluorescent protein (GFP) was immobilized on the as‐synthesized GZO nanostructured materials by a dipping process. Atomic force microscopy (AFM) and fluorescence spectroscopy measurements were con‐ducted to confirm the surface binding nature of GFP on the GZO nanostructures to determine their suitability for use in sensor applications and bioimaging techniques. Trace‐level addition of GFP to the GZO nanostructures resulted in a fluorescence response, revealing good activity for ultraviolet light sensor applications.
文摘To improve the hydrophilicity of polyacrylonitrile-based membranes, sugar moieties were incorporated into acrylonitrile-based copolymers via the radical copolymerization of α-allyl glucoside(AG) with acrylonitrile(AN) with 2,2′-azobis-iso-butyronitrile(AIBN) as the initiator in dimethyl sulphoxide(DMSO). It was found that the yield increased with the increase of the initiator concentration and reaction time, while it decreased with the increase of the monomer molar ratio of AG to AN. Raising the AG proportion in the monomer mixture resulted in the increase of the AG content in the copolymer. M_v of the copolymers decreased with increasing the AG monomer fraction in feed. The copolymers were fabricated into dense membranes and their surface properties were studied by means of the water contact angle measurement and platelet adhesion tests. It was found that the static water contact angle on the membrane decreased significantly from 70° to 33° with the increase of the AG content. The adhesive number of platelets on the membrane surface also decreased significantly with increasing AG content in the copolymers. These results demonstrate that the hydrophilicity and biocompatibility of the acrylonitrile-based copolymer membranes could be improved efficiently by the copolymerization of acrylonitrile with vinyl carbohydrates.
基金Supported by the National Natural Science Foundation of China( No.2 0 12 5 5 15,2 0 2 990 30 ) and the Starting Fund fromthe Ministry of Education of China
文摘The oxidation of CO on platinum electrodes in an acid solution was studied with the conventional electrochemical methods and the on-line electrochemical mass spectroscopy. It was found that this reaction is strongly determined by the surface morphology of platinum. The pretreatment of platinum electrodes can change the surface properties dramatically, in consequence it can improve the electrocatalytic activity towards the electrooxidation of CO. The existence of surface active sites on the roughened platinum electrodes can be used to explain its high electrocatalysis towards the oxidation of CO.
文摘Diamond-like carbon (DLC) films were successfully deposited on Ti- 50.8 at% Ni using plasma based ion implantation (PBII) technique. The influence of the pulsed negative bias voltage applied to the substrate from 12 kV to 40 kV on the microstracture, nano-indentation hardness and Young' s modulus, the surface characteristics and corrosion resistant property as well as hemocompatibility were investigated. The experimental resalts showed that C 1 s peak depended heavily on the bias voltage. With the increase of bias voltage, the ratio of sp2 / sp3 first decreased, reaching a minimum value at 20 kV, and then increased. The DLC coating deposited at 20 kV showed the highest hardness and elastic modulus values as a result of lower sp2/sp3 ratio. The RMS values first decreased from 7.202nm(12 kV) to 5.279 nm(20 kV), and then increased to 11.449 nm(30 kV) and 7.060 nm( 40 kV). The uncoated TiNi alloy showed severe pitting corrosion, due to the presence of Cl-ions in the solution. On the contrary, the DLC coated sample showed very little pitting corrosion and behaved better corrosion resistant property especially for the specimens deposited at 20 kV bias voltages. The platelet adhesion test show that the hemocompatibility of DLC coated TiNi alloy is much better than that of bare TiNi alloy, and the hemocompatibility performance of DLC coated TiNi alloy deposited at 20 kV is superior to that of other coated specimens.
基金National Demonstration Center for Experimental Materials Science and Engineering Education(Donghua University),China。
文摘Biopolymer fibers have great potential for technical applications in biomaterials.The surface properties of fibers are of importance in these applications.In this study,electrospun poly(L-lactide)(PLLA)/poly(ε-caprolactone)(PCL)membranes were modified by cold plasma treatment and coating gelatin to improve the surface hydrophilic properties.The morphologies of the fibers were observed by scanning electron microscopy(SEM).Atomic force microscopy(AFM)was employed to show the surface characteristics of the fibers.The chemical feature of the fibrous membrane surfaces was examined by X-ray photoelectron spectroscopy(XPS).The surface wettability of the fibrous membrane was also characterized by water contact angle measurements.All these results show that plasma treatment can have profound effects on the surface properties of fibrous membranes by changing their surface physical and chemical features.Gelatin-PLLA/PCL membrane has great potential in applications of tissue engineering scaffolds.